Objective: Employ a novel testing method to assess Multi Directional Impact Protection System (MIPS) helmet technology on rotational velocity and acceleration during head impact.

Methods: An optimization study was completed utilizing a 50th percentile male Hybrid III anthropomorphic test device (ATD). Helmets included expanded polystyrene foam (EPS) and two different MIPS helmets (MIPS 1, MIPS 2). A 24.38-m-long elevated track with rails and a motorized sled was utilized to replicate a fall from approximately 2.13 m. The sled was set to a speed of 20.92 kph, where a tripping mechanism induced rotation in the ATD from the sled and onto a sand surface. During impact of the ATD with the sand surface, head kinematics were measured using resultant acceleration (peak G's), duration of impact (ms), and rotational velocity (rad/s).

Results: A total of three trials for each helmet did not demonstrate a significant difference between the EPS vs. MIPS 1 group with, peak (G's) for resultant acceleration ( = 0.100), duration (ms) for resultant acceleration, ( = 0.100), peak (G's) for rotational velocity, ( = 0.700), and duration (ms) for rotational velocity ( = 0.700). Similarly, the EPS vs. MIPS 2 testing demonstrated no significant differences between the MIPS 2 helmet compared to the EPS helmet, with resultant acceleration ( = 0.400), duration acceleration ( = 0.200), rotational velocity ( = 0.400) and duration velocity ( = 0.400). However, when the MIPS helmet data were pooled, and the EPS helmet data were compared, a statistically significant difference in the duration of acceleration was found ( = 0.048).

Conclusions: Current testing uses a helmeted head form which is dropped or rolled from a prescribed height. These methods discount the loading placed on the neck and head through the angular momentum of the body. Our novel testing method did not find significant differences between the helmet types in diminishing peak rotational forces to the brain; however, our data suggests that MIPS helmet liners may reduce duration of impact. The reduction of acceleration duration could indicate less rotation of the neck, due to the dampening of these forces by the MIPS liners.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00913847.2023.2282381DOI Listing

Publication Analysis

Top Keywords

rotational velocity
20
mips helmet
16
resultant acceleration
16
testing method
12
eps mips
12
peak g's
12
helmet
10
mips
10
novel testing
8
acceleration
8

Similar Publications

Investigating Cell-Induced Mixing Dynamics in Microfluidic Droplets Using the Lattice Boltzmann Method.

Langmuir

January 2025

CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.

This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.

View Article and Find Full Text PDF

Gas-Phase Scattering of Transition Metal Atoms Fe, Ir, and Pt with CH, O, and CO.

J Phys Chem A

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Understanding the interactions between transition metal atoms and molecules is important for the study of various related chemical and physical processes. In this study, we have investigated collisions between iron (Fe), iridium (Ir), and platinum (Pt) and the small molecules CH, O, and CO using a crossed-beam and time-sliced ion velocity map imaging technique. Elastic collisions were observed in all cases, except for collisions of Pt with O and CO.

View Article and Find Full Text PDF

Labyrinth seals (LSs) in turbomachinery are used to minimize leaks. This study presents an experimental setup designed to test and validate LS designs. The test bench (TB) described in this paper can evaluate different LS designs obtained through various methods to find better solutions to mitigate greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

Aerodynamic performance enhancement of centrifugal compressor using numerical techniques.

F1000Res

January 2025

Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.

View Article and Find Full Text PDF

We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!