Background: In recent years, millets are often considered an emerging crop for sustainable agriculture. Therefore, millets can be exploited as an alternative source of starch which has many applications ranging from food, packaging, bioplastics, and others. However, starch is seldom used in its native form and is more often modified to enhance its functional properties. In literature, many traditional millet-based food recipes often incorporate a fermentation step before cooking. Therefore, using this traditional knowledge fermentation has been explored as a potential method for modifying millet starch.

Results: Pearl millet (PM) and finger millet (FM) flour were allowed to naturally ferment for 24 h followed by starch extraction. Compared to native (N) starch, water/oil holding capacity and least gelation concentration of fermented (F) starch decreased with no significant change in swelling power. The solubility, paste clarity and in vitro digestibility of starch were significantly affected by fermentation. X-ray diffraction (XRD) data indicates that after fermentation, crystallinity increased while the A-type crystalline structure remained intact. Fourier-transform infrared (FTIR) spectra showed no deletion or addition of any new functional groups. Thermal characterization by differential scanning calorimetry (DSC) showed that the enthalpy of gelatinization of PM starch decreased while that of FM starch increased after fermentation.

Conclusion: The results indicate that 24 h natural fermentation had a significant impact on functional properties of starch without altering the structural architecture of starch granules. Therefore, fermentation can be further explored as a low-cost alternative for starch modification. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13129DOI Listing

Publication Analysis

Top Keywords

starch
11
natural fermentation
8
finger millet
8
functional properties
8
fermentation explored
8
starch decreased
8
fermentation
7
investigating natural
4
fermentation modifying
4
modifying physico-functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!