Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur. The obtained N/P/S-codoped CNDs exhibit wide light absorption in the range of 200-900 nm and excitation-dependent emission with high photostability. Importantly, the cancer cell-derived N/P/S-codoped CNDs have outstanding biocompatibility and naturally intrinsic targeted ability for cancer cells as well as dual photothermal/photodynamic effects under 795 nm laser irradiation. Moreover, the photothermal conversion efficiency and singlet oxygen (O) generation efficiency were calculated to be 52 and 34%, respectively. These exceptional properties enable CNDs to act as fine theranostic agents for targeted imaging and photothermal-photodynamic synergistic therapy within the NIR therapeutic window. The CNDs prepared in this work are promising for construction as a universal tumor phototheranostic platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c03926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!