Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues. Although volatile-mediated interplant interactions have been observed both above- and belowground, it remains unknown whether belowground herbivory induces systemic HIPVs aboveground that influence neighbouring plants. To explore how belowground herbivory affects interplant interactions aboveground, we characterised systemic HIPVs from squash induced by belowground striped cucumber beetle (Acalymma vittatum) larval herbivory. We exposed squash 'receiver plants' to systemic HIPVs or volatiles from nondamaged plants. We then measured herbivore resistance by challenging 'receiver plants' with aboveground-feeding herbivores: adult beetles (A. vittatum) or squash bugs (Anasa tristis). We discovered belowground-damaged plants emitted more (E)-β-ocimene, a key volatile from the systemic HIPV blend, than nondamaged controls, and that exposure to systemic HIPVs enhanced neighbouring plant resistance to aboveground squash bugs, but not adult beetles. Further investigations into the mechanism of interplant interaction revealed β-ocimene alone can elicit plant resistance against squash bugs. Overall, our findings reveal a novel form of volatile-mediated interactions between plants spanning across aboveground-belowground plant systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14762 | DOI Listing |
Plant Cell Environ
February 2024
Department of Entomology, Texas A&M University, College Station, Texas, USA.
Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues.
View Article and Find Full Text PDFFront Plant Sci
June 2023
Department of Biosciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India.
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling.
View Article and Find Full Text PDFPlant Signal Behav
August 2017
b Department of Environmental and Biological Sciences , University of Eastern Finland, FI , Kuopio , Finland.
Many plants respond to herbivory by releasing a complex blend of volatiles that may differ from that emitted by intact counterparts. These herbivore-induced plant volatiles (HIPV) mediate many interactions among plants and their community members, including alerting undamaged leaves of the attacked or neighboring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signaling and that other organisms subsequently evolved to use them.
View Article and Find Full Text PDFMol Ecol
December 2013
Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 11002, India.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either.
View Article and Find Full Text PDFFront Plant Sci
June 2013
Department of Environmental Science, University of Eastern Finland Kuopio, Finland.
Herbivore induced plant volatiles (HIPVs) are specific volatile organic compounds (VOC) that a plant produces in response to herbivory. Some HIPVs are only produced after damage, while others are also produced by intact plants, but in lower quantities. Among the known functions of HIPVs are within plant volatile signaling to activate systemic plant defenses, the priming and activation of defenses in neighboring plants and the attraction of natural enemies of herbivores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!