The frequency-following response (FFR) is an evoked potential that provides a "neural fingerprint" of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning, musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed FFRs stem from a mixture of phase-locked neurogenic activity from brainstem and cortical structures along the hearing neuraxis. Here, we challenge this prevailing view by demonstrating upwards of ~50% of the FFR can originate from a non-neural source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We first establish PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses by 3-4x fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634913PMC
http://dx.doi.org/10.1101/2023.10.27.564446DOI Listing

Publication Analysis

Top Keywords

frequency-following response
8
response ffr
8
ffr
5
myogenic artifacts
4
artifacts masquerade
4
masquerade neuroplasticity
4
neuroplasticity auditory
4
auditory frequency-following
4
ffr frequency-following
4
ffr evoked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!