Flexible developmental programs enable plants to customize their organ size and cellular composition. In leaves of eudicots, the stomatal lineage produces two essential cell types, stomata and pavement cells, but the total numbers and ratio of these cell types can vary. Central to this flexibility is the stomatal lineage initiating transcription factor, SPEECHLESS (SPCH). Here we show, by multiplex CRISPR/Cas9 editing of -regulatory sequences in tomato, that we can identify variants with altered stomatal development responses to light and temperature cues. Analysis of tomato leaf development across different conditions, aided by newly-created tools for live-cell imaging and translational reporters of SlSPCH and its paralogues SlMUTE and SlFAMA, revealed the series of cellular events that lead to the environmental change-driven responses in leaf form. Plants bearing the novel SlSPCH variants generated in this study are powerful resources for fundamental and applied studies of tomato resilience in response to climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635072 | PMC |
http://dx.doi.org/10.1101/2023.11.02.564550 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.
View Article and Find Full Text PDFLife (Basel)
January 2025
Biology Department, College of Science, King Khalid University [KKU], Abha 61413, Saudi Arabia.
This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.
View Article and Find Full Text PDFACS Agric Sci Technol
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process on plant physiology needs to be better understood.
View Article and Find Full Text PDFPhysiol Plant
January 2025
KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain.
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!