The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In , the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635155PMC
http://dx.doi.org/10.1101/2023.11.05.565703DOI Listing

Publication Analysis

Top Keywords

pilus-specific sortase
12
srtc2
11
housekeeping sortase
8
type fimbriae
8
fimp polymers
8
activity srtc2
8
extended lid
8
lid srtc2
8
partial deletion
8
srtc2 lid
8

Similar Publications

Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria.

Annu Rev Microbiol

November 2024

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.

Article Synopsis
  • Pili, or fimbriae, are unique proteins made of linked subunits that are found on the surface of gram-positive bacteria, assembled by an enzyme called sortase.
  • These proteins are important for a variety of functions, including adhesion to surfaces, immune system interaction, and roles in disease-causing abilities of bacteria.
  • The review discusses ongoing research into how pili are formed, their functions, potential applications in vaccines, and the future of this area of study.
View Article and Find Full Text PDF

Molecular basis for dual functions in pilus assembly modulated by the lid of a pilus-specific sortase.

J Biol Chem

June 2024

Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA. Electronic address:

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated.

View Article and Find Full Text PDF

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In , the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated.

View Article and Find Full Text PDF

Gram-positive bacteria display pili whose protein components (pilins) are covalently crosslinked by pilus-specific sortase enzymes. These cysteine transpeptidase enzymes catalyze a transpeptidation reaction that joins the pilins together via lysine isopeptide bonds. The crosslinking reaction that builds the SpaA pilus in Corynebacterium diphtheriae is mediated by the SrtA sortase (SrtA) and has been reconstituted in vitro.

View Article and Find Full Text PDF

Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!