AI Article Synopsis

  • Cathepsin D (CatD) plays a crucial role in the degradation of amyloid-β and tau proteins associated with Alzheimer’s disease, but its specific effects on these pathologies in living organisms have been minimally studied.
  • In a study where CatD was removed from mice that express human amyloid precursor protein (hAPP), researchers found that the absence of CatD led to significant increases in intracellular amyloid-β aggregates and remarkable tauopathy, beginning as early as three weeks of age.
  • Experiments indicated that blocking CatD activity hinders tau degradation, suggesting that CatD is essential for managing the levels of these proteins and could be crucial for understanding Alzheimer’s disease progression.

Article Abstract

Background: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-β protein (Aβ) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aβ pathology and tauopathy in vivo.

Methods: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model characterized by pronounced lysosomal dysfunction (Krabbe A). Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau.

Results: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aβ, manifesting as intense, exclusively intracellular aggregates; extracellular Aβ deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatDKO mice were found to develop prominent tauopathy by just ~ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology in aged JNPL3 mice. CatDKO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (~ 1250%) are present in CatD-KO mice, but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aβ42.

Conclusions: Our findings support a major role for CatD in the proteostasis of both Aβ and tau in vivo. To our knowledge, CatD-KO mice are the only model to develop detectable Aβ acumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aβ42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635349PMC
http://dx.doi.org/10.21203/rs.3.rs-3464352/v1DOI Listing

Publication Analysis

Top Keywords

mice
12
transgenic mice
12
catd-ko mice
12
catd
10
prominent tauopathy
8
alzheimer disease
8
role catd
8
happ transgenic
8
gallyas silver
8
silver staining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!