Objectives: Cisplatin is known to cause inner ear dysfunction. There is growing evidence that cisplatin-induced demyelination of spiral or Scarpa's ganglion neurons may play an additional role in drug-induced ototoxicity alongside afferent neuron injury. As Schwann cells produce myelin, there may be an opportunity to reduce ototoxic inner ear damage by promoting Schwann cell viability. This work describes a cellular model of cisplatin-induced Schwann cell injury and investigates the ability of the antioxidant N-acetylcysteine to promote Schwann cell viability. A local delivery system of drug-eluting microparticles was then fabricated, characterized, and investigated for bioactivity.

Methods: RSC96 rat Schwann cells were dosed with varying concentrations of cisplatin to obtain a dose curve and identify the lethal concentration of 50% of the cells (LC ). In subsequent experiments, RSC96 cells were co-treated with cisplatin and both resuspended or eluted N-acetylcysteine. Cell viability was assessed with the CCK8 assay.

Results: The LC dose of cisplatin was determined to be 3.76 μM (p=2.2 × 10 ). When co-dosed with cisplatin and therapeutic concentration of resuspended or eluted N-acetylcysteine, Schwann cells had an increased viability compared to cells dosed with cisplatin alone.

Conclusion: RSC96 Schwann cell injury following cisplatin insult is characterized in this in vitro model. Cisplatin caused injury at physiologic concentrations and N-acetylcysteine improved cell viability and mitigated this injury. N-acetylcysteine was packaged into microparticles and eluted N-acetylcysteine retained its ability to increase cell viability, thus demonstrating promise as a therapeutic to offset cisplatin-induced ototoxicity.

Lay Summary: Cisplatin is a chemotherapeutic agent known to cause balance and hearing problems through damage to the inner ear. This project explored cisplatin injury in a Schwann cell culture model and packaged an antioxidant into microparticles suitable for future drug delivery applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635004PMC
http://dx.doi.org/10.1101/2023.10.31.564430DOI Listing

Publication Analysis

Top Keywords

schwann cell
24
cell viability
20
inner ear
12
schwann cells
12
eluted n-acetylcysteine
12
cisplatin
10
schwann
9
cell
9
rsc96 schwann
8
injury schwann
8

Similar Publications

Intramedullary schwannomas are a type of benign spinal cord tumor that originates from the Schwann cells of the nerve sheath. They are relatively rare and typically occur within the spinal cord itself, rather than in the surrounding tissue. Treatment options for cervical intramedullary schwannomas include surgical removal of the tumor, radiation therapy, and observation.

View Article and Find Full Text PDF

Robotic-Assisted Minimally Invasive Resection of Multiple Oesophageal Schwannomas: A Case Report.

Cureus

November 2024

Department of Upper Gastrointestinal and Hepatobiliary Surgery, Monash Health, Melbourne, AUS.

Schwannomas are rare, benign tumours arising from Schwann cells, with oesophageal cases representing a small fraction. Their variety of symptoms and nonspecific imaging features often make preoperative diagnosis challenging, frequently requiring immunohistochemical staining for confirmation. We describe the case of a 62-year-old woman with progressive dysphagia, found to have a subepithelial mass at the gastroesophageal junction (GOJ).

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2.

J Biol Chem

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:

Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.

View Article and Find Full Text PDF

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!