The incorporation of histone variants, distinct paralogs of core histones, into chromatin affects all DNA-templated processes in the cell, including the regulation of transcription. In recent years, much research has been focused on H2A.Z, an evolutionarily conserved H2A variant found in all eukaryotes. In order to investigate the functional conservation of H2A.Z histones during eukaryotic evolution we transformed deficient plants with each of the three human H2A.Z variants to assess their ability to rescue the mutant defects. We discovered that human H2A.Z.1 and H2A.Z.2.1 fully complement the phenotypic abnormalities of plants despite significant divergence in the N-terminal tail sequences of Arabidopsis and human H2A.Zs. In contrast, the brain-specific splice variant H2A.Z.2.2 has a dominant-negative effect in wild-type plants, mimicking an H2A.Z deficiency phenotype. Furthermore, H2A.Z.1 almost completely re-establishes normal H2A.Z chromatin occupancy in plants and restores the expression of more than 84% of misexpressed genes. Finally, we used a series of N-terminal tail truncations of Arabidopsis HTA11 to reveal that the N-terminal tail of Arabidopsis H2A.Z is not necessary for normal plant development but does play an important role in mounting proper environmental stress responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635141PMC
http://dx.doi.org/10.1101/2023.11.03.565555DOI Listing

Publication Analysis

Top Keywords

n-terminal tail
16
h2az
8
arabidopsis h2az
8
human h2az
8
functional conservation
8
replacement arabidopsis
4
human
4
h2az human
4
h2az orthologs
4
orthologs reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!