A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs. | LitMetric

CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs.

bioRxiv

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA.

Published: October 2023

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in reconstructing protein structures from them. However, the widely used template-based particle picking process requires some manual particle picking and is labor-intensive and time-consuming. Though machine learning and artificial intelligence (AI) can potentially automate particle picking, the current AI methods pick particles with low precision or low recall. The erroneously picked particles can severely reduce the quality of reconstructed protein structures, especially for the micrographs with low signal-to-noise (SNR) ratios. To address these shortcomings, we devised CryoTransformer based on transformers, residual networks, and image processing techniques to accurately pick protein particles from cryo-EM micrographs. CryoTransformer was trained and tested on the largest labelled cryo-EM protein particle dataset - CryoPPP. It outperforms the current state-of-the-art machine learning methods of particle picking in terms of the resolution of 3D density maps reconstructed from the picked particles as well as F1-score and is poised to facilitate the automation of the cryo-EM protein particle picking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634673PMC
http://dx.doi.org/10.1101/2023.10.19.563155DOI Listing

Publication Analysis

Top Keywords

particle picking
20
protein particles
12
particles cryo-em
12
cryo-em micrographs
12
protein
8
protein structures
8
machine learning
8
picked particles
8
cryo-em protein
8
protein particle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!