A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders. | LitMetric

Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders.

bioRxiv

Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.

Published: September 2024

The coronavirus disease of 2019 (COVID-19) pandemic is characterized by sequential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, lineages, and sublineages, outcompeting previously circulating ones because of, among other factors, increased transmissibility and immune escape. We propose DeepAutoCoV, an unsupervised deep learning anomaly detection system to predict future dominant lineages (FDLs). We define FDLs as viral (sub)lineages that will constitute more than 10% of all the viral sequences added to the GISAID database on a given week. DeepAutoCoV is trained and validated by assembling global and country-specific data sets from over 16 million Spike protein sequences sampled over a period of about 4 years. DeepAutoCoV successfully flags FDLs at very low frequencies (0.01% - 3%), with median lead times of 4-17 weeks, and predicts FDLs ~5 and ~25 times better than a baseline approach For example, the B.1.617.2 vaccine reference strain was flagged as FDL when its frequency was only 0.01%, more than a year before it was considered for an updated COVID-19 vaccine. Furthermore, DeepAutoCoV outputs interpretable results by pinpointing specific mutations potentially linked to increased fitness, and may provide significant insights for the optimization of public health intervention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634784PMC
http://dx.doi.org/10.1101/2023.10.24.563721DOI Listing

Publication Analysis

Top Keywords

anomaly detection
8
forecasting dominance
4
dominance sars-cov-2
4
sars-cov-2 lineages
4
lineages anomaly
4
detection deep
4
deep autoencoders
4
autoencoders coronavirus
4
coronavirus disease
4
disease 2019
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!