Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634814PMC
http://dx.doi.org/10.1101/2023.10.24.563826DOI Listing

Publication Analysis

Top Keywords

dentate spikes
8
dss types
8
waveform-based classification
4
classification dentate
4
spikes synchronous
4
synchronous excitatory
4
excitatory discharges
4
discharges entorhinal
4
entorhinal cortex
4
cortex dentate
4

Similar Publications

Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices.

Hippocampus

January 2025

Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA.

Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively.

View Article and Find Full Text PDF

In this study, a comparison of biofilm formation, extracellular polymeric substances (EPS) production, protein and polysaccharides estimation, and protein profiling through SDS-PAGE, FTIR, GC-MS, ESI-MS, SEM, and AFM analysis were done for EPS from epilithic bacteria BC1 obtained from monumental rock under normal room temperature and heat stressed condition. Heat stress (60 ± 2 °C) that simulates hot monumental rock surfaces during the summer season caused  bacteria BC1 to produce more EPS (8.56 g/L), biofilm, protein and polysaccharides, extra SDS-PAGE protein bands of different molecular weight than their control counterpart.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers treated Wistar dams with VPA to investigate behavioral and neurological changes in their male offspring, which exhibited impairments in social interaction, sensorimotor coordination, and synaptic activity measured by fEPSP.
  • * Findings indicated that while the overall metaplastic response was similar between VPA-treated and control animals, key autism-related gene expressions were significantly reduced in the offspring of VPA-treated rats, suggesting a potential adaptation mechanism in response to disrupted gene expression.
View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in high-density multi-channel electrodes allow researchers to record large numbers of neurons from previously tough-to-access brain areas.
  • The study evaluated five popular spike-sorting software packages in the rostral ventromedial medulla (RVM) region, revealing that different sorters produced unique results and varied levels of manual curation required.
  • Kilosort3 and IronClust were the most efficient, needing less manual curation while identifying more neuron units, while Tridesclous identified the fewest units but all packages successfully detected key RVM cell types.
View Article and Find Full Text PDF

Unlabelled: Glutamatergic dentate gyrus (DG) mossy cells (MCs) innervate the primary DG cell type, granule cells (GCs). Numerous MC synapses are on GC proximal dendrites in the inner molecular layer (IML). However, field recordings of the GC excitatory postsynaptic potential (fEPSPs) have not been used to study this pathway selectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!