estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory gated approaches, such as 4D flow MRI, cannot capture CSF movement in real time due to limited temporal resolution and in addition deteriorate in accuracy at low fluid velocities. Other techniques like real-time PC-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability even in research settings. This study aims to quantify the inflow effect of dynamic CSF motion on functional magnetic resonance imaging (fMRI) for , real-time measurement of CSF flow velocity. We considered linear and nonlinear models of velocity waveforms and empirically fit them to fMRI data from a controlled flow experiment. To assess the utility of this methodology in human data, CSF flow velocities were computed from fMRI data acquired in eight healthy volunteers. Breath holding regimens were used to amplify CSF flow oscillations. Our experimental flow study revealed that CSF velocity is nonlinearly related to inflow effect-mediated signal increase and well estimated using an extension of a previous nonlinear framework. Using this relationship, we recovered velocity from fMRI signal, demonstrating the potential of our approach for estimating CSF flow velocity in the human brain. This novel method could serve as an alternative approach to quantifying slow flow velocities in real time, such as CSF flow in the ventricular system, thereby providing valuable insights into the glymphatic system's function and its implications for neurological disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634978 | PMC |
http://dx.doi.org/10.1101/2023.08.14.553250 | DOI Listing |
J Inflamm Res
January 2025
Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
Purpose: Allergic diseases have escalated to epidemic levels worldwide, impacting nearly 30% of the global population. Fungi are a significant source of allergens responsible for up to 6% of respiratory diseases in the general population. However, the specific cause of respiratory allergies often remains unidentified.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA.
Background: The immune heterogeneity of biliary atresia (BA) presents a challenge for development of prognostic biomarkers. This study aimed to identify early immune signatures associated with biliary drainage after Kasai Portoenterostomy (KPE).
Methods: Serum samples, liver slides, and clinical data were obtained from patients enrolled in the NIDDK-supported Childhood Liver Disease Research Network.
Cerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFMol Brain
January 2025
Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Delirium is a common complication in elderly surgical patients and is associated with an increased risk of dementia. Although advanced age is a major risk factor, the mechanisms underlying postoperative delirium remain poorly understood. The glymphatic system, a brain-wide network of perivascular pathways, facilitates cerebrospinal fluid (CSF) flow and supports the clearance of metabolic waste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!