Unlabelled: The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development.

Teaser: Fecal transplants from human infants with highly abundant , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634763PMC
http://dx.doi.org/10.1101/2023.10.24.563309DOI Listing

Publication Analysis

Top Keywords

human infants
12
spine density
12
gut microbiome
8
brain connectivity
8
dendritic morphology
8
morphology spine
8
humanized animals
8
humanized groups
8
greater dendritic
8
dendritic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!