We propose a new concept image sensor suitable for viewing and sensing applications. This is a report of a CMOS image sensor with a pixel architecture consisting of a 1.5 μm pixel with four-floating-diffusions-shared pixel structures and a 3.0 μm pixel with an in-pixel capacitor. These pixels are four small quadrate pixels and one big square pixel, also called quadrate-square pixels. They are arranged in a staggered pitch array. The 1.5 μm pixel pitch allows for a resolution high enough to recognize distant road signs. The 3 μm pixel with intra-pixel capacitance provides two types of signal outputs: a low-noise signal with high conversion efficiency and a highly saturated signal output, resulting in a high dynamic range (HDR). Two types of signals with long exposure times are read out from the vertical pixel, and four types of signals are read out from the horizontal pixel. In addition, two signals with short exposure times are read out again from the square pixel. A total of eight different signals are read out. This allows two rows to be read out simultaneously while reducing motion blur. This architecture achieves both an HDR of 106 dB and LED flicker mitigation (LFM), as well as being motion-artifact-free and motion-blur-less. As a result, moving subjects can be accurately recognized and detected with good color reproducibility in any lighting environment. This allows a single sensor to deliver the performance required for viewing and sensing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648763PMC
http://dx.doi.org/10.3390/s23218998DOI Listing

Publication Analysis

Top Keywords

μm pixel
16
image sensor
12
pixel
10
µm pixels
8
high dynamic
8
dynamic range
8
viewing sensing
8
sensing applications
8
square pixel
8
types signals
8

Similar Publications

Localized temperature sensing and control on a micron-scale have diverse applications in biological systems. We present a micron-sized hydrogel pillar array as potential temperature probes and actuators by exploiting sensitive temperature dependence of their volume change. Soft lithography-based molding processes were presented to fabricate poly N-isopropyl acrylamide (p-NIPAAm)-based hydrogel pillar array on a glass substrate.

View Article and Find Full Text PDF

Within speech processing, articulatory-to-acoustic mapping (AAM) methods can apply ultrasound tongue imaging (UTI) as an input. (Micro)convex transducers are mostly used, which provide a wedge-shape visual image. However, this process is optimized for the visual inspection of the human eye, and the signal is often post-processed by the equipment.

View Article and Find Full Text PDF

We have fabricated a temperature-sensitive hydrogel through copolymerization of N-isopropylacrylamide (NIPAAm) and Acrylamide (AAm) inside a macroporous silicon structure and demonstrated fast thermal response compared to its bulk structure. The presented method allows physical arrangement of micro-sized hydrogels within a predefined arrayed structure. Static and dynamic temperature responses of the fabricated structure are successfully demonstrated through optical transmission measurement.

View Article and Find Full Text PDF

Objective: Fetal echocardiographic analysis is essential for detecting cardiac defects at early gestational ages. Fetal cardiac function can be assessed by performing some measurements regarding the dimension and shape of the heart cavities. In this work we propose an automatic segmentation method applied to the analysis of the left ventricle in fetal echocardiography.

View Article and Find Full Text PDF

An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!