Recognition of Grasping Patterns Using Deep Learning for Human-Robot Collaboration.

Sensors (Basel)

Department of Mechanical Engineering (DEM), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal.

Published: November 2023

Recent advances in the field of collaborative robotics aim to endow industrial robots with prediction and anticipation abilities. In many shared tasks, the robot's ability to accurately perceive and recognize the objects being manipulated by the human operator is crucial to make predictions about the operator's intentions. In this context, this paper proposes a novel learning-based framework to enable an assistive robot to recognize the object grasped by the human operator based on the pattern of the hand and finger joints. The framework combines the strengths of the commonly available software MediaPipe in detecting hand landmarks in an RGB image with a deep multi-class classifier that predicts the manipulated object from the extracted keypoints. This study focuses on the comparison between two deep architectures, a convolutional neural network and a transformer, in terms of prediction accuracy, precision, recall and F1-score. We test the performance of the recognition system on a new dataset collected with different users and in different sessions. The results demonstrate the effectiveness of the proposed methods, while providing valuable insights into the factors that limit the generalization ability of the models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650364PMC
http://dx.doi.org/10.3390/s23218989DOI Listing

Publication Analysis

Top Keywords

human operator
8
recognition grasping
4
grasping patterns
4
patterns deep
4
deep learning
4
learning human-robot
4
human-robot collaboration
4
collaboration advances
4
advances field
4
field collaborative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!