The existing algorithms for identifying and tracking pigs in barns generally have a large number of parameters, relatively complex networks and a high demand for computational resources, which are not suitable for deployment in embedded-edge nodes on farms. A lightweight multi-objective identification and tracking algorithm based on improved YOLOv5s and DeepSort was developed for group-housed pigs in this study. The identification algorithm was optimized by: (i) using a dilated convolution in the YOLOv5s backbone network to reduce the number of model parameters and computational power requirements; (ii) adding a coordinate attention mechanism to improve the model precision; and (iii) pruning the BN layers to reduce the computational requirements. The optimized identification model was combined with DeepSort to form the final Tracking by Detecting algorithm and ported to a Jetson AGX Xavier edge computing node. The algorithm reduced the model size by 65.3% compared to the original YOLOv5s. The algorithm achieved a recognition precision of 96.6%; a tracking time of 46 ms; and a tracking frame rate of 21.7 FPS, and the precision of the tracking statistics was greater than 90%. The model size and performance met the requirements for stable real-time operation in embedded-edge computing nodes for monitoring group-housed pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649120PMC
http://dx.doi.org/10.3390/s23218952DOI Listing

Publication Analysis

Top Keywords

edge computing
8
group-housed pigs
8
model size
8
tracking
6
algorithm
5
model
5
recognition tracking
4
tracking group-housed
4
group-housed pigs'
4
pigs' posture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!