Modern fault ride-through (FRT) standards in many countries require distributed generators to remain connected for a specified period during the fault by providing reactive current, to support voltage and prevent a massive renewable outage. As a result, short-circuit current is not constant, but it varies depending on the current and disconnection order of distributed generators (DGs). This time-varying short-circuit current complicates the estimation of the time it will take for an overcurrent relay or fuse to trip. The existing short-circuit calculation algorithms usually assume that the fault current is constant throughout the whole period of fault. This assumption may result in incorrect conclusions regarding the tripping time of protective devices in networks with high renewable penetration. This paper incorporates modern FRT standards into the fault analysis by considering the influence of fault current variations on the protective devices (relays, fuses), significantly increasing the accuracy of the estimated tripping time. Simulations carried out in a 13-bus and the IEEE 8500-node network indicate that the traditional short-circuit calculation approaches may miscalculate the tripping time of protective devices, with deviations up to 80 s, when applied to networks complying with modern FRT standards.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647489 | PMC |
http://dx.doi.org/10.3390/s23218868 | DOI Listing |
Sci Rep
January 2025
Computational Data Science Program, College of Computational and Natural Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
This study presents an in-depth analysis and evaluation of the performance of a standard 200 W solar cell, focusing on the energy and exergy aspects. A significant research gap exists in the comprehensive integration of numerical models with advanced machine-learning approaches, specifically emotional artificial neural networks (EANN), to simulate and optimize the electrical characteristics and efficiency of solar panels. To address this gap, a numerical model alongside a novel EANN was employed to simulate the system's electrical characteristics, including open-circuit voltage, short-circuit current, system resistances, maximum power point characteristics, and characteristic curves.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Data Brief
August 2024
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
The deployment of Li-ion batteries covers a wide range of energy storage applications, from mobile phones, e-bikes, electric vehicles (EV) to stationary energy storage systems. However, safety issue such as thermal runaway is always one of the most important concerns preventing Li-ion batteries from further market penetration. A standardized single-side indentation test protocol was developed to mechanically induce an internal short-circuit.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, China.
Hot-carrier relaxation above the bandgap results in significant energy losses, making the extraction of hot carriers a critical challenge for efficient hot-carrier photocurrent generation in devices. In this study, we observe long-lived hot carriers in the metal-halide perovskite multiple quantum wells, (BA)(MA)PbI (n = 3), and demonstrate effective hot-hole photocurrent generation using 2D MoS₂ as an extraction layer. A high external quantum efficiency of short-circuit hot-carrier photocurrent of up to 35.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India.
In the present study, we demonstrated a cost-effective chia seed-based triboelectric nanogenerator (C-TENG), leveraging the triboelectric properties of chia seeds. The C-TENGs are fabricated with a simple architecture, establishing adaptability, cost effectiveness, and versatility as an ecofriendly harvester of mechanical energy. The C-TENG exhibits open- circuit voltage and short-circuit currents on the order of 501.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!