Securing Industrial Control Systems: Components, Cyber Threats, and Machine Learning-Driven Defense Strategies.

Sensors (Basel)

Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA.

Published: October 2023

Industrial Control Systems (ICS), which include Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and Programmable Logic Controllers (PLC), play a crucial role in managing and regulating industrial processes. However, ensuring the security of these systems is of utmost importance due to the potentially severe consequences of cyber attacks. This article presents an overview of ICS security, covering its components, protocols, industrial applications, and performance aspects. It also highlights the typical threats and vulnerabilities faced by these systems. Moreover, the article identifies key factors that influence the design decisions concerning control, communication, reliability, and redundancy properties of ICS, as these are critical in determining the security needs of the system. The article outlines existing security countermeasures, including network segmentation, access control, patch management, and security monitoring. Furthermore, the article explores the integration of machine learning techniques to enhance the cybersecurity of ICS. Machine learning offers several advantages, such as anomaly detection, threat intelligence analysis, and predictive maintenance. However, combining machine learning with other security measures is essential to establish a comprehensive defense strategy for ICS. The article also addresses the challenges associated with existing measures and provides recommendations for improving ICS security. This paper becomes a valuable reference for researchers aiming to make meaningful contributions within the constantly evolving ICS domain by providing an in-depth examination of the present state, challenges, and potential future advancements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649322PMC
http://dx.doi.org/10.3390/s23218840DOI Listing

Publication Analysis

Top Keywords

control systems
12
machine learning
12
industrial control
8
ics security
8
ics
7
security
7
control
6
systems
6
article
5
securing industrial
4

Similar Publications

The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates.

View Article and Find Full Text PDF

TiO-Based Implantable Memristor for Biomedical Engineering.

ACS Appl Mater Interfaces

January 2025

Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Implantable memristors are considered an emerging electronic technology that can simulate brain memory function and demonstrate some promising applications in the biomedical field. However, it remains a critical challenge to enhance their long-term stability and biocompatibility in implantation environments. In this work, an implantable memristor has been successfully fabricated based on TiO using magnetron sputtering.

View Article and Find Full Text PDF

For tolerant containment control of multi-agent systems, considering the challenges in modeling and the impact of actuator faults on system security and reliability, a finite index dynamic event-triggered policy iteration algorithm is proposed. This algorithm only requires input and output data, without relying on system models, and simultaneously considers the faults and energy consumption issues to improve the system reliability and save energy consumption. The conditions are provided to demonstrate the convergence and optimality of the algorithm, including a convergence speed, that is, the number of iterations required for convergence is finite.

View Article and Find Full Text PDF

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Shading stress promotes lignin biosynthesis in soybean seed coat and consequently extends seed longevity.

Int J Biol Macromol

January 2025

College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China. Electronic address:

The macromolecular components of the seed coat, particularly lignin, play a critical role in regulating seed viability. In the maize-soybean intercropping (MSI) system, shading stress was reported to enhance the viability of soybean seeds. However, the specific role of seed coat lignin in this process remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!