The early health warning of a cable-stayed bridge is of great significance for discovering the abnormal condition of the structure, eliminating the risk factors, and ensuring the normal operation of the bridge in order to set a reasonable safety monitoring threshold to ensure the safety warning and condition assessment of the bridge structure. A method of dynamic early warning by considering the temperature effect is adopted in this paper on the basis of the benchmark threshold. Based on the long-term deflection monitoring data of a bridge in Wuhan, the generalized Pareto distribution (GPD) extreme value analysis theory is used to set the benchmark threshold. Then, by constructing the seasonal autoregressive integrated moving average (SARIMA) long-span bridge temperature effect prediction model, the reference threshold is dynamically adjusted. Finally, it is compared with the traditional fixed threshold monitoring system. The results show that the dynamic threshold has stronger adaptability to the monitoring of cable-stayed bridges and can also achieve effective monitoring of local mutations in other periods. Dynamic threshold early warning can reduce the shortcomings of traditional early warning methods such as underreporting and misreporting. At the same time, the GPD extreme value analysis theory overcomes the disadvantage that the extreme value information is not fully utilized. It has an important application value for bridge health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648320PMC
http://dx.doi.org/10.3390/s23218826DOI Listing

Publication Analysis

Top Keywords

dynamic threshold
12
early warning
12
cable-stayed bridge
8
bridge health
8
health monitoring
8
monitoring system
8
benchmark threshold
8
gpd extreme
8
extreme analysis
8
analysis theory
8

Similar Publications

Background: A surgical robot with force feedback can guarantee precise and gentle manipulation for endometrial repair, ensuring the effectiveness and safety of the manipulation. However, the design of force sensors for surgical robots is challenging due to the limited anatomical space and the requirement for continuous rotation.

Methods: This paper presents a novel force-sensing surgical instrument for endometrial repair, including an inner scraping instrument and an outer force sensing sheath.

View Article and Find Full Text PDF

Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.

View Article and Find Full Text PDF

Purpose The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.

View Article and Find Full Text PDF

This paper explores the electrical conductivity interphase of Ag/Epoxy composite using modified McLachlan theory and 3D finite element composite model through experimental verification. The model characteristic presents conductivity as a dynamic function influenced by particle content, particle electrical properties, electrical properties transition, and an exponent. This model was meticulously crafted, considering the intricate interplay between the polymer matrix and silver particles, the tunnelling distance between adjacent silver particles, and the interphase regions around particles.

View Article and Find Full Text PDF

Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!