The rapid advancement of climate change and global warming have widespread impacts on society, including ecosystems, water security, food production, health, and infrastructure. To achieve significant global emission reductions, approximately 74% is expected to come from cutting carbon dioxide (CO2) emissions in energy supply and demand. Carbon Capture and Storage (CCS) has attained global recognition as a preeminent approach for the mitigation of atmospheric carbon dioxide levels, primarily by means of capturing and storing CO2 emissions originating from fossil fuel systems. Currently, geological models for storage location determination in CCS rely on limited sampling data from borehole surveys, which poses accuracy challenges. To tackle this challenge, our research project focuses on analyzing exposed rock formations, known as outcrops, with the goal of identifying the most effective backbone networks for classifying various strata types in outcrop images. We leverage deep learning-based outcrop semantic segmentation techniques using hybrid backbone networks, named OutcropHyBNet, to achieve accurate and efficient lithological classification, while considering texture features and without compromising computational efficiency. We conducted accuracy comparisons using publicly available benchmark datasets, as well as an original dataset expanded through random sampling of 13 outcrop images obtained using a stationary camera, installed on the ground. Additionally, we evaluated the efficacy of data augmentation through image synthesis using Only Adversarial Supervision for Semantic Image Synthesis (OASIS). Evaluation experiments on two public benchmark datasets revealed insights into the classification characteristics of different classes. The results demonstrate the superiority of Convolutional Neural Networks (CNNs), specifically DeepLabv3, and Vision Transformers (ViTs), particularly SegFormer, under specific conditions. These findings contribute to advancing accurate lithological classification in geological studies using deep learning methodologies. In the evaluation experiments conducted on ground-level images obtained using a stationary camera and aerial images captured using a drone, we successfully demonstrated the superior performance of SegFormer across all categories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650223 | PMC |
http://dx.doi.org/10.3390/s23218809 | DOI Listing |
Biomed Tech (Berl)
January 2025
College of Ocean, Jiangsu University of Science and Technology, Zhenjiang, China.
Objectives: In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.
This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.
View Article and Find Full Text PDFSci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Phys Med Biol
January 2025
Charles Sturt University, Albury-Wodonga, NSW, Albury, New South Wales, 2640, AUSTRALIA.
Bone is a common site for the metastasis of malignant tumors, and Single Photon Emission Computed Tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!