A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overcoming Periodic Stripe Noise in Infrared Linear Array Images: The Fourier-Assisted Correlative Denoising Method. | LitMetric

Overcoming Periodic Stripe Noise in Infrared Linear Array Images: The Fourier-Assisted Correlative Denoising Method.

Sensors (Basel)

Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China.

Published: October 2023

Infrared linear array detectors frequently experience vertical, low-frequency, and periodic stripe noise during imaging, stemming from electro-mechanical interference. Unlike conventional periodic disturbances, this interference showcases long periodicities and is uniquely columnar in orientation. Its presence, especially within the low-frequency domain, renders conventional filtering techniques ineffective and, at times, detrimental to image quality. Addressing this challenge, we introduce Fourier-Assisted Correlative Denoising (FACD), a correlation-centric denoising approach tailored for such unique interference patterns. This mechanism begins with the capture of a pure background image, inclusive of periodic noise, during the non-uniform correction phase of the infrared detector. Leveraging the noise's frequency domain attributes, we extract a one-dimensional single-cycle noise signal. The infrared image is subsequently segmented into parts, and using the detected noise periodicity, the one-dimensional signals for each segment are computed. By leveraging the correlation between these signals and the benchmark one-dimensional noise pattern, we ascertain the noise profile within each segment. This profile is then employed for spatial domain denoising across the entire image frame. Empirical assessments confirm that the FACD outperforms contemporary denoising techniques by augmenting the peak signal-to-noise ratio by approximately 2.5 dB, underscoring its superior robustness. Furthermore, in light of its specificity to this noise model, FACD rapidly denoises high-resolution real infrared linear array scans, thus meeting the stringent real-time and resolution imperatives of advanced infrared linear array scanning apparatuses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650797PMC
http://dx.doi.org/10.3390/s23218716DOI Listing

Publication Analysis

Top Keywords

infrared linear
16
linear array
16
periodic stripe
8
noise
8
stripe noise
8
fourier-assisted correlative
8
correlative denoising
8
infrared
6
denoising
5
overcoming periodic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!