Association between Lipids, Apolipoproteins and Telomere Length: A Mendelian Randomization Study.

Nutrients

Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Published: October 2023

(1) Background: The relationship between lipids, apolipoproteins, and telomere length (TL) has been explored in previous studies; however, the causal relationship between the two remains unclear. This study aims to assess the causal relationship between lipids, apolipoproteins, and TL using the two-sample Mendelian randomization (MR) approach; (2) Methods: This study comprehensively employed both univariate MR (uvMR) and multivariate MR (mvMR) methods to genetically evaluate the associations between 21 exposures related to lipids and apolipoproteins and the outcome of TL. During the analysis process, we utilized various statistical methods, including Inverse Variance Weighting (IVW), Weighted Median, MR-Egger regression, MR-PRESSO, and outlier tests. Furthermore, to confirm the robustness of the results, we conducted several sensitivity analyses to explore potential heterogeneity; (3) Results: The uvMR analysis indicated that an increase in MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and triglycerides (TG) was associated with an increase in TL. However, this relationship did not manifest in the mvMR analysis, suggesting that this association may be based on preliminary evidence; (4) Conclusions: MR analysis results suggest potential suggestive positive causal relationships between genetically predicted MUFA, MUFA/FA ratio, LDL-C, VLDL-C, total cholesterol, ApoB, and TG with TL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647842PMC
http://dx.doi.org/10.3390/nu15214497DOI Listing

Publication Analysis

Top Keywords

lipids apolipoproteins
16
apolipoproteins telomere
8
telomere length
8
mendelian randomization
8
relationship lipids
8
causal relationship
8
mufa mufa/fa
8
mufa/fa ratio
8
ratio ldl-c
8
ldl-c vldl-c
8

Similar Publications

Background: The regulatory role of the apolipoprotein E (APOE) ε4 allele in the clinical manifestations of spinocerebellar ataxia type 3 (SCA3) remains unclear. This study aimed to evaluate the impact of the APOE ε4 allele on cognitive and motor functions in SCA3 patients.

Methods: This study included 281 unrelated SCA3 patients and 182 controls.

View Article and Find Full Text PDF

Familial hypercholesterolemia in Chinese children and adolescents: a multicenter study.

Lipids Health Dis

December 2024

Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.

Background: Familial hypercholesterolemia (FH) is an inherited disorder mainly marked by increased low-density lipoprotein cholesterol (LDL-C) concentrations and a heightened risk of early-onset arteriosclerotic cardiovascular disease (ASCVD). This study seeks to characterize the genetic spectrum and genotype‒phenotype correlations of FH in Chinese pediatric individuals.

Methods: Data were gathered from individuals diagnosed with FH either clinically or genetically at multiple hospitals across mainland China from January 2016 to June 2024.

View Article and Find Full Text PDF

Biomarkers and Seaweed-Based Nutritional Interventions in Metabolic Syndrome: A Comprehensive Review.

Mar Drugs

December 2024

Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.

Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein found in microglia within the brain, and its soluble form (sTREM2) has been shown to reduce amyloid deposition. Whether elevated TREM2-mediated microglial activity decreases the risk of Alzheimer's disease (AD) is unclear. The aim of this study was to assess whether high cerebrospinal fluid (CSF) levels of sTREM2 attenuate the risk of APOE ε4-associated amyloid pathology.

View Article and Find Full Text PDF

Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies.

Curr Protein Pept Sci

December 2024

Department of Pharmaceutical Engineering & Technology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.

Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ɛ4 allele is one of the main genetic risk factors for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!