Soil management systems can directly interfere with crop yield via changes in the soil's physical and hydraulic properties. However, short- to medium-term experiments of conduction do not always demonstrate the modifications of the management systems in these properties. Thus, the aim of this study was to evaluate the physical properties of the soil in a long-term management system and to relate it to the storage and availability of water to plants, verifying its effect on soybean yield. The experiment was conducted in randomized blocks in a split-plot scheme with four replications. Plots were composed by soil management (conventional tillage and no-tillage), and subplots represented three soil depths (0.0-0.1, 0.1-0.2, and 0.2-0.4 m). The soil's physical and hydraulic properties, root development, and soybean yield were evaluated. The no-tillage system not only presented higher bulk density and soil resistance to compaction up to a depth of 0.2 m but also greater root development. This management also did not affect the process of water infiltration in the soil and presented an increase in soybean grain yield by 6.5%. The long-term no-tillage system (33 years) offers less risk of water stress to soybean plants; it contributes to greater grain yield of this crop when compared to the conventional tillage system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649011PMC
http://dx.doi.org/10.3390/plants12213762DOI Listing

Publication Analysis

Top Keywords

no-tillage system
12
conventional tillage
12
soybean grain
8
tillage system
8
soil management
8
management systems
8
soil's physical
8
physical hydraulic
8
hydraulic properties
8
soybean yield
8

Similar Publications

Conservation tillage and fertilization are widely adopted in agricultural systems to enhance soil fertility and influence fungal communities, thereby improving agroecosystems. However, the effects of no-tillage combined with manure on grain yield, nitrogen use efficiency (NUE), soil fertility, and rhizosphere fungal communities remain poorly understood, particularly in rainfed wheat fields on the Loess Plateau. A 15-year field experiment was conducted at the Niujiawa Experimental Farm of the Cotton Research Institute, Shanxi Agricultural University.

View Article and Find Full Text PDF

Optimizing cover crop practices as a sustainable solution for global agroecosystem services.

Nat Commun

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.

The practice of cover crops has gained popularity as a strategy to improve agricultural sustainability, but its full potential is often limited by environmental trade-offs. Using meta-analytic and data-driven quantifications of 2302 observations, we optimized cover crop practices and evaluated their benefits for global agroecosystems. Cover crops have historically boosted crop yields, soil carbon storage, and stability, but also stimulated greenhouse gas emissions.

View Article and Find Full Text PDF

Climate change jeopardizes the food security gains achieved in India since the Green Revolution, especially by impacting the productivity of the rice-wheat system in the Indo-Gangetic Plain, a region that serves as the 'breadbasket' of South Asia. In this study, we characterized the potential of long-term conservation agriculture (CA) based management practices (i.e.

View Article and Find Full Text PDF

miR-PC-3p-241582_34 Contributes to the Infection of by Regulating the Expression of in .

J Agric Food Chem

December 2024

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, P. R. China, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, People's Republic of China.

is a recurring pest in the maize seedling stage under the wheat-maize no-tillage direct seeding system in China's summer maize region. Our previous research identified a highly pathogenic to , which spore wall protein plays an important role in the infection process. However, the regulatory mechanism of this spore wall protein is still unclear.

View Article and Find Full Text PDF

Long-term continual straw return can enhance soil quality and increase crop yields by perpetually altering the soil environment. However, little is known about how different straw return methods affect soil physicochemical properties, enzymatic processes, and crop yields. The study aims to determine how different straw return practices improve soil structure, nutrients, enzyme activities, and maize yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!