Rice blast has caused major production losses in rice, and thus the early detection of rice blast plays a crucial role in global food security. In this study, a semi-supervised contrastive unpaired translation iterative network is specifically designed based on unmanned aerial vehicle (UAV) images for rice blast detection. It incorporates multiple critic contrastive unpaired translation networks to generate fake images with different disease levels through an iterative process of data augmentation. These generated fake images, along with real images, are then used to establish a detection network called RiceBlastYolo. Notably, the RiceBlastYolo model integrates an improved fpn and a general soft labeling approach. The results show that the detection precision of RiceBlastYolo is 99.51% under intersection over union (IOU) conditions and the average precision is 98.75% under IOU conditions. The precision and recall rates are respectively 98.23% and 99.99%, which are higher than those of common detection models (YOLO, YOLACT, YOLACT++, Mask R-CNN, and Faster R-CNN). Additionally, external data also verified the ability of the model. The findings demonstrate that our proposed model can accurately identify rice blast under field-scale conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647743 | PMC |
http://dx.doi.org/10.3390/plants12213675 | DOI Listing |
Front Plant Sci
December 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Cesena, Italy.
Ferroptosis, an iron-dependent form of regulated cell death, has recently emerged as a crucial process in the pathogenesis of , the causal agent of the devastating rice blast disease, which causes billions of dollars in annual losses. This mini review explores the potential of antioxidants in suppressing ferroptosis in to promote sustainable rice production, with significant implications for global food security and nutrition. We critically analyze the current literature on the mechanisms of ferroptosis in , including iron metabolism and lipid peroxidation, the role of different antioxidants in inhibiting this cell death pathway, and the potential applications of antioxidant-based strategies for the management of rice blast disease.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS SEA, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States;
Major resistance (R) gene mediated resistance to rice blast fungus Magnaporthe oryzae is often overcome by the fungus due to the occurrences of new races with altered corresponding avirulence (AVR) genes. In this study, blast diseased rice tissue samples were collected from breeding stations and commercial rice fields in Arkansas, Louisiana, and Puerto Rico during 2017-2019 to determine the efficacy of major R genes, Pi-ta, Pik, Pizt, Pi9, and Pi33. A total of 185 blast isolates were isolated from the diseased tissue samples to examine the existence of AVR genes AVR-Pita1, AVR-Pib, AVR-Pik, AVR-Pizt, AVR-Pi9 and ACE1.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India.
Rice blast disease, instigated by (), significantly impedes global rice production. Targeting the signaling protein, cAMP-Protein Kinase A (CPKA), which facilitates appressorium development and host penetration, this study explores the potential inhibitory effects of natural compounds. Virtual screening, molecular docking and text mining approaches were used to find the nimonol and curcumin that inhibit the CPKA protein.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100039, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. Electronic address:
Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae.
View Article and Find Full Text PDFPlanta
December 2024
Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.
Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!