Xinyang Maojian (XYMJ) tea is one of the world's most popular green teas; the development of new sprouts directly affects the yield and quality of tea products, especially for XYMJ, which has hairy tips. Here, we used transcriptome and small RNA sequencing to identify mRNAs and miRNAs, respectively, involved in regulating leaf development in different plant tissues (bud, leaf, and stem). We identified a total of 381 conserved miRNAs. Given that no genomic data for XYMJ green tea are available, we compared the sequencing data for XYMJ green tea with genomic data from a closely related species (Tieguanyin) and the var. database; we identified a total of 506 and 485 novel miRNAs, respectively. We also identified 11 sequence-identical novel miRNAs in the tissues of XYMJ tea plants. Correlation analyses revealed 97 miRNA-mRNA pairs involved in leaf growth and development; the csn-miR319-2/csnTCP2 and miR159-csnMYB modules were found to be involved in leaf development in XYMJ green tea. Quantitative real-time PCR was used to validate the expression levels of the miRNAs and mRNAs. The miRNAs and target genes identified in this study might shed new light on the molecular mechanisms underlying the regulation of leaf development in tea plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649745 | PMC |
http://dx.doi.org/10.3390/plants12213665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!