This study aimed to improve the injection molding quality of LSR material lenses by optimizing the process parameters. To achieve this goal, we employed the population-based optimization algorithm NSGA-III, which can simultaneously optimize multiple objective functions and identify an equilibrium point among them, thereby reducing the time required to find the optimal process parameters. We utilized analysis software to simulate the injection molding process of LSR material lenses, with a specific focus on examining the relationship between tie bar elongation and the optimized process parameters. During the study, we intentionally varied key process parameters, including the melt temperature, holding pressure, and holding time, to analyze their impact on the residual stress of the final product. In order to investigate the intricate relationship between the tie bar yield, injection molding process parameters, and lens residual stress, we installed strain sensors on the tie bar to continuously monitor changes in clamping force throughout the injection molding process. The experimental results showed that both the tie bar force and mold cavity pressure exerted significant influence on residual stresses. By applying the NSGA-III algorithm for optimization, we successfully determined the optimal process parameters, which included a melt temperature of 34.92 °C, a holding pressure of 33.97 MPa, and a holding time of 9.96 s. In comparison to the initially recommended process parameters during the design phase, the optimized parameters led to reductions of 12.98% in clamping force and 47.14% in residual stress. Furthermore, the average transmittance of the actual product remained within the range of 95-98%. In summary, this approach not only enables the prediction of the lens's residual stress trends based on the tie bar elongation, but also leads to a substantial enhancement of lens quality, characterized by reduced residual stress and improved transmittance through the optimization of process parameters. This methodology can serve as a valuable guide for optimizing real-world injection molding processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649150 | PMC |
http://dx.doi.org/10.3390/polym15214278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!