AI Article Synopsis

  • The study explores cinnamic acid derivatives as alternative plasticizers for PVC films, aiming to reduce health and environmental risks associated with traditional phthalate-based plasticizers.
  • The research indicates that these derivatives improve the tensile properties of PVC films, increasing ductility and flexibility while maintaining transparency, making them suitable for various applications.
  • Cinnamic acid-based plasticizers enhance film quality and performance without hindering processing temperatures, contributing to more sustainable and effective PVC formulations.

Article Abstract

This study investigates the viability of cinnamic acid derivatives as alternative plasticizers for polyvinyl chloride (PVC) films by addressing concerns about conventional phthalate-based options that pose health and environmental risks. By theoretical modeling, this research evaluates the compatibility between various cinnamic acid-based plasticizers and the PVC matrix, which suggests their potential effectiveness. Additionally, the incorporation of these plasticizers notably enhances the tensile properties of PVC films, particularly in terms of ductility and elongation at break by surpassing the neat PVC. Moreover, cinnamic acid-based plasticizers induce a drop in the glass transition temperature and storage modulus by, thereby, enhancing flexibility and reducing brittleness in the material. Although a slight reduction in the onset degradation temperature is observed, it does not impede the industrial processing of PVC plastisols at temperatures up to 190 °C. Optically, plasticized films exhibit high transparency with minimal UV and visible light absorption, which renders them suitable for applications necessitating clarity. The water vapor transmission rate analysis indicates increased permeability, influenced by molecular volumes. Atomic force microscopy reveals a compacted, homogeneous surface structure in most plasticized films, which signifies improved film quality. Thus, utilizing cinnamic acid derivatives as PVC plasticizers offers substantial mechanical and structural benefits, while compatibility ensures effective integration by contributing to environmentally sustainable PVC formulations with enhanced performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648044PMC
http://dx.doi.org/10.3390/polym15214265DOI Listing

Publication Analysis

Top Keywords

cinnamic acid
12
acid derivatives
12
derivatives alternative
8
alternative plasticizers
8
polyvinyl chloride
8
pvc films
8
cinnamic acid-based
8
acid-based plasticizers
8
plasticized films
8
pvc
7

Similar Publications

Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products.

Food Res Int

January 2025

Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.

Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.

View Article and Find Full Text PDF

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications.

Pharmaceuticals (Basel)

December 2024

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China.

Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil.

View Article and Find Full Text PDF

Generation and Assessment of Soybean ( (L.) Merr.) Hybrids for High-Efficiency -Mediated Transformation.

Life (Basel)

December 2024

Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary.

The -mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for attraction and subsequent T-DNA integration into the plant genome. Susceptible genotypes may permit this attachment and integration, and the agronomically superior genotypes with susceptibility to would play an important role in increasing transformation efficiency.

View Article and Find Full Text PDF

Acidic stability and mechanisms of soil cadmium immobilization by layered double hydroxides intercalated with mercaptosuccinic acid.

Environ Res

January 2025

State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing 211135, China. Electronic address:

Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!