This study used the sweeping air approach to conduct a comparative analysis of pervaporation (PV) and membrane distillation (MD) in the context of desalinating saline/hypersaline water. An experimental setup of the sweeping air arrangement was designed and built at a laboratory size to conduct the research. The desalination process using PV used innovatively designed cellulose acetate (CA) membranes specifically adapted for this purpose. Conversely, in the studies involving MD, hydrophobic polytetrafluoroethylene (PTFE) membranes were utilised. CA membranes were fabricated in our laboratory using the phase inversion approach. The physicochemical characteristics of the membranes were assessed using many methodologies, including FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurement, and water uptake analysis. This facilitated a more comprehensive comprehension of the impact of the alkaline treatment on these features. The variables that were examined included the kind of membrane, the pore size of the PTFE membrane, the composition of the casting solution of CA, the concentration of the feed solution, the temperature of the feed, and the temperature of the condenser cooling water. The morphologies of the membranes were examined using SEM. The study's findings indicated that the use of MD resulted in a greater flow and a remarkable percentage of salt rejection (% SR). Furthermore, it was observed that the flux was positively correlated with the feed temperature, while it exhibited an inverse relationship with the cooling water temperature. Moreover, it was observed that the impact of the pore size of the PTFE membrane on the desalination process was found to be minimal. The most optimal outcomes obtained were 13.35 kg/m h with a percentage salt rejection (% SR) of 99.86, and 17.96 kg/m h with a % SR of 99.83 at a temperature of 70 °C, while using MD and PV technologies, respectively. Furthermore, both methods demonstrated the capability to desalinate very salty solutions with a salinity level of up to 160 g/L, thereby yielding potable water in a single step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648555PMC
http://dx.doi.org/10.3390/polym15214237DOI Listing

Publication Analysis

Top Keywords

sweeping air
12
comparative analysis
8
analysis pervaporation
8
pervaporation membrane
8
membrane distillation
8
desalination process
8
pore size
8
size ptfe
8
ptfe membrane
8
feed temperature
8

Similar Publications

Permeable asphalt pavement (PAP) is an efficient solution to stormwater management, allowing water to infiltrate through its layers. This reduces surface runoff and mitigates urban flooding risks. In addition to these hydrological benefits, PAP enhances water quality by filtering pollutants such as organic and inorganic materials and microplastics.

View Article and Find Full Text PDF

Removal of Subretinal Gas After Pneumatic Retinopexy Under Air Using External Manipulation.

Retin Cases Brief Rep

January 2025

The Retina Service of Wills Eye Hospital, Wills Eye Physicians-Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA.

Purpose: To illustrate a technique for the removal of subretinal gas via pars plana vitrectomy (PPV) with air-fluid exchange and simultaneous manipulation with scleral depression.

Methods: PPV to remove subretinal gas causing persistent macula-off retinal detachment was performed in one eye, and the results were evaluated in this case report. Ports were carefully placed to avoid puncturing the retina, which was significantly displaced anteriorly past the ora serrata due to the buoyancy of the subretinal gas with the patient in a supine position.

View Article and Find Full Text PDF

Isostructural Dy(III) and Er(III) complexes [L Ln(HO)][I] ⋅ L  ⋅ (CHCl) (Ln=Dy (1), Er (3)) and [L Ln(HO)][I] ⋅ L  ⋅ (CHCl) (Ln=Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHPr) (L) and carbazolyl phosphoramide (Cz)P(O)(NHPr) (L). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (U) of 640 K and 491 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D symmetry.

View Article and Find Full Text PDF

Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.

View Article and Find Full Text PDF

The detection of 4-chloro-2-methylphenoxyacetic acid (CMPA) herbicide is crucial due to the potential health risks linked to exposure through drinking water, air, and food, which may adversely affect liver and kidney functions. To address this environmental concern and promote sustainable agriculture, a sensitive carbon paste sensor incorporating a composite material was developed. The composite sensor is based on porous cobalt-1,4-benzenedicarboxylate metal-organic framework and exfoliated montmorillonite nanolayers (Co-OF/MMt).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!