A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Approaches to Control Crazing Deformation of PHA-Based Biopolymeric Blends. | LitMetric

The mechanical behavior of polymer materials is heavily influenced by a phenomenon known as crazing. Crazing is a precursor to damage and leads to the formation of cracks as it grows in both thickness and tip size. The current research employs an in situ SEM method to investigate the initiation and progression of crazing in all-biopolymeric blends based on Polyhydroxyalkanoates (PHAs). To this end, two chemically different grades of PHA, namely poly(hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV), were melt-blended with polybutyrate adipate terephthalate (PBAT). The obtained morphologies of blends, the droplet/fibrillar matrix, were highly influenced by the plasticity of the matrices as well as the content of the minor phase. Increasing the concentration of PBAT from 15 to 30 wt.% resulted in the brittle to ductile transition. It changed the mechanism of plastic deformation from single craze-cracking to homogeneous and heterogeneous intensified crazing for PHB and PHBHV matrices, respectively. Homogeneous tensile crazes formed perpendicularly to the draw direction at the initial stages of deformation, transformed into shear crazes characterized by oblique edge propagation for the PHBHV/PBAT blend. Such angled crazes suggested that the displacement might be caused by shear localized deformation. The crazes' strength and the time to failure increased with the minor phase fibers. These fibers, aligned with the tensile direction and spanning the width of the crazes, were in the order of a few micrometers in diameter depending on the concentration. The network of fibrillar PBAT provided additional integrity for larger plastic deformation values. This study elucidates the mechanism of crazing in PHA blends and provides strategies for controlling it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650116PMC
http://dx.doi.org/10.3390/polym15214234DOI Listing

Publication Analysis

Top Keywords

minor phase
8
plastic deformation
8
crazing
6
deformation
5
approaches control
4
control crazing
4
crazing deformation
4
deformation pha-based
4
pha-based biopolymeric
4
blends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!