A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration. | LitMetric

Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration.

Polymers (Basel)

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

Published: October 2023

Deep eutectic solvents (DESs) are promising for lignin dissolution and extraction. However, they usually possess high polarity and are difficult to recycle. To overcome this drawback, a variety of switchable ionic liquids (SILs) composed of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and alcohols was synthesized and screened. According to the thermodynamic modeling suggestions, the selected DBU-HexOH SIL was coupled with hydrogen-bond donors to form switchable-DES (SDES) systems with moderated viscosity, conductivity, and pH while maintaining switchability. The SDESs produced a well-improved lignin and lignin model compound solubility compared with those of SILs; charging CO into SDES (SDES) caused a further increase in solubility. The solubility (25 °C) of syringic acid, ferulic acid, and milled wood lignin in SDES reached 230.57, 452.17, and 279.12 mg/g, respectively. Such SDES-dissolved lignin can be regenerated using acetone as an anti-solvent. The SDES-regenerated lignin exhibited a well-preserved structure with no noticeable chemical modifications. Furthermore, the SDES lignin possessed a higher molecular weight (Mw = 10,340 g/mol; Mn = 7672 g/mol), improved uniformity (polydispersity index = 1.35), and a higher guaiacyl lignin unit content compared with the original milled wood lignin. The SDES system proposed in the present work could benefit the fractionation of lignin compounds and facilitate downstream industrial processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650827PMC
http://dx.doi.org/10.3390/polym15214233DOI Listing

Publication Analysis

Top Keywords

lignin
11
deep eutectic
8
eutectic solvents
8
lignin dissolution
8
milled wood
8
wood lignin
8
lignin sdes
8
sdes
6
switchable deep
4
solvents lignin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!