Hybrid Zn-β-Aminoporphyrin-Carbon Nanotubes: Pyrrolidine and Direct Covalent Linkage Recognition, and Multiple-Photo Response.

Molecules

LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Published: November 2023

To unveil and shape the molecular connectivity in (metallo)porphyrin-carbon nanotube hybrids are of main relevance for the multiple medicinal, photoelectronic, catalytic, and photocatalytic applications of these materials. Multi-walled carbon nanotubes (MWCNTs) were modified through 1,3-dipolar cycloaddition reactions with azomethine ylides generated in situ and carrying pentafluorophenyl groups, followed by immobilization of the β-amino-tetraphenylporphyrinate Zn(II). The functionalities were confirmed via XPS and FTIR, whereas Raman spectroscopy showed disruptions on the graphitic carbon nanotube surface upon both steps. The functionalization extension, measured via TGA mass loss and corroborated via XPS, was 0.2 mmol·g. Photophysical studies attest to the presence of the different porphyrin-carbon nanotube connectivity in the nanohybrid. Significantly different emission spectra and fluorescence anisotropy of 0.15-0.3 were observed upon variation of excitation wavelength. Vis-NIR absorption and flash photolysis experiments showed energy/charge transfer in the photoactivated nanohybrid. Moreover, evidence was found for direct reaction of amino groups with a carbon nanotube surface in the presence of molecular dipoles such as the zwitterionic sarcosine amino acid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649226PMC
http://dx.doi.org/10.3390/molecules28217438DOI Listing

Publication Analysis

Top Keywords

carbon nanotube
8
nanotube surface
8
hybrid zn-β-aminoporphyrin-carbon
4
zn-β-aminoporphyrin-carbon nanotubes
4
nanotubes pyrrolidine
4
pyrrolidine direct
4
direct covalent
4
covalent linkage
4
linkage recognition
4
recognition multiple-photo
4

Similar Publications

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.

View Article and Find Full Text PDF

Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings.

Polymers (Basel)

December 2024

Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.

The synergistic effect of CNT and three-dimensional N-doped graphene foam (3DNG) on improving corrosion resistance of zinc-reinforced epoxy (ZRE) composite coatings was studied in this work. Although CNT itself was demonstrated to be effective to promote the anti-corrosion performance of the ZRE coating, the incorporation of additional 3DNG leads to further enhancement of its corrosion resistance under the synergistic effect of the hybrid carbon nanofillers with different dimensions. Both the content of the carbonaceous fillers and the ratio between them affected the performance of the coating.

View Article and Find Full Text PDF

The WHO has classified Helicobacter pylori as a group 1 carcinogen for stomach cancer since early 1994. However, despite the high prevalence of Helicobacter pylori infection, only about 3% of infected people eventually develop gastric cancer.Biomolecular detections of Helicobacter pylori(HP) were compared using specially modified sensors and fluorine immobilized on a carbon nanotube (HFCNT) electrode, which yielded sensitive results.

View Article and Find Full Text PDF

We report the exfoliation of ultrathin gallium oxide (GaO) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These GaO films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on GaO provides a versatile platform for device fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!