Cyetpyrafen is a compound that lacks inherent uptake and systemic translocation activity. If mites do not come into direct contact with the pesticide solution on leaves, the efficacy cannot be achieved. Controlling the particle size can potentially play a crucial role in the manifestation of efficacy. In this study, high-throughput formulation technology was used to systematically screen a large number of adjuvants to obtain cyetpyrafen formulations. The particle size of the active ingredient in the formulation was measured. By examining the dynamic light scattering and contact angle, we simulated the actual process of the efficacy transmission of cyetpyrafen formulations against . Our results showed that the activity of cyetpyrafen increases as the particle size decreases, suggesting that reducing the particle size can enhance the coverage and deposition on crop leaves, and further improve the dispersion efficiency and enhance spreading capabilities. Furthermore, controlling the particle size at 160 nm resulted in an LC value of 0.2026, which is approximately double than that of the commercial product. As a novel pesticide for mites, our study presents the most effective cyetpyrafen formulation in practice. Our findings provide valuable insights into controlling other mite species that pose a threat to agricultural products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648920PMC
http://dx.doi.org/10.3390/molecules28217432DOI Listing

Publication Analysis

Top Keywords

particle size
24
cyetpyrafen formulation
8
activity cyetpyrafen
8
controlling particle
8
cyetpyrafen formulations
8
particle
6
cyetpyrafen
6
size
5
size cyetpyrafen
4
formulation
4

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

Method development and validation on RP-HPLC method for estimation of xanthohumol in nanostructured lipid carriers drug delivery systems.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia. Electronic address:

Xanthohumol(Xn) is isolated from female inflorescences of Humulus lupulus. It has been discovered that Xn and its formulation are useful in the treatment of cancer. As this bioactive compound has medicinal importance, hence, a novel, precise, and sensitive HPLC method should be developed.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae.

J Environ Manage

January 2025

School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:

The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!