Malignant cardiac arrhythmias with high morbidity and mortality have posed a significant threat to our human health. Scutellarein, a metabolite of Scutellarin which is isolated from L., presents excellent therapeutic effects on cardiovascular diseases and could further be metabolized into methylated forms. A series of 22 new scutellarein derivatives with hydroxyl-substitution based on the scutellarin metabolite in vivo was designed, synthesized via the conjugation of the scutellarein scaffold with pharmacophores of FDA-approved antiarrhythmic medications and evaluated for their antiarrhythmic activity through the analyzation of the rat number of arrhythmia recovery, corresponding to the recovery time and maintenance time in the rat model of barium chloride-induced arrhythmia, as well as the cumulative dosage of aconitine required to induce VP, VT, VF and CA in the rat model of aconitine-induced arrhythmia. All designed compounds could shorten the time of the arrhythmia continuum induced by barium chloride, indicating that 4'-hydroxy substituents of scutellarein had rapid-onset antiarrhythmic effects. In addition, nearly all of the compounds could normalize the HR, RR, QRS, QT and QTc interval, as well as the P/T waves' amplitude. The most promising compound showed the best antiarrhythmic activity with long-term efficacy and extremely low cytotoxicity, better than the positive control scutellarein. This result was also approved by the computational docking simulation. Most importantly, patch clamp measurements on Nav1.5 and Cav1.2 channels indicated that compound was able to reduce the INa and ICa in a concentration-dependent manner and left-shifted the inactivation curve of Nav1.5. Taken together, all compounds were considered to be antiarrhythmic. Compound even showed no proarrhythmic effect and could be classified as Ib Vaughan Williams antiarrhythmic agents. What is more, compound did not block the hERG potassium channel which highly associated with cardiotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650756PMC
http://dx.doi.org/10.3390/molecules28217417DOI Listing

Publication Analysis

Top Keywords

antiarrhythmic activity
12
nav15 cav12
8
cav12 channels
8
rat model
8
antiarrhythmic
7
scutellarein
6
synthesis vivo
4
vivo antiarrhythmic
4
activity evaluation
4
evaluation novel
4

Similar Publications

Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide.

View Article and Find Full Text PDF

With the widespread use of lidocaine for pain control in cancer therapy, its antitumor activity has attracted considerable attention in recent years. This paper provides a simple strategy of combining lidocaine with chemotherapy drugs for cancer therapy, aiming to relieve chemotherapy-induced pain and achieve stronger antitumor efficacy. However, there is still a lack of substantial pre-clinical evidence for the efficacy and related mechanisms of such combinations, obstructing their potential clinical application.

View Article and Find Full Text PDF

Dronedarone a comprehensive drug profile.

Profiles Drug Subst Excip Relat Methodol

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.

This comprehensive drug profile provides a detailed exploration of Dronedarone, an antiarrhythmic medication used for regulating irregular heartbeats. This chapter covers various aspects of Dronedarone, including its nomenclature, formulae, physical characteristics, methods of preparation, and analytical methods. The nomenclature section presents the IUPAC and nonproprietary names of Dronedarone, along with its proprietary names.

View Article and Find Full Text PDF

Rationale: Local anesthesia is a widely used technique for emergency wound closure, with lidocaine among the most commonly employed local anesthetics. Allergic reactions to lidocaine are rare, with anaphylaxis being even more uncommon.

Patient Concerns And Diagnosis: This report describes a 72-year-old male patient who presented with a right foot injury and underwent wound suturing under lidocaine local anesthesia.

View Article and Find Full Text PDF

Lidocaine could promote the cuproptosis through up-regulating the long noncoding RNA DNMBP-AS1 in Hep-2 cells.

BMC Cancer

January 2025

Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, Dalian, 116011, Liaoning, China.

Background: Lidocaine is a traditional local anesthetic, which has been reported to trigger apoptosis through the mitochondrial pathway, independent of death receptor signaling. Cuproptosis is a copper triggered mitochondrial cell death mode. In this study, we explored the biological effects of lidocaine on cuproptosis in Hep-2 cells and studied the relevant mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!