AI Article Synopsis

  • Adsorption and separation of xenon (Xe) and krypton (Kr) are crucial for promoting safe nuclear energy and supporting the gas industry, necessitating better models for predicting these processes in metal-organic frameworks (MOFs).
  • Researchers developed a new model, BPNN-SP, that predicts the separation potential (SP) of 38 MOFs based on different physical characteristics like electronegativity and temperature, achieving a high regression coefficient over 0.995.
  • The combination of the new adsorbate model and the BPNN-SP model significantly enhances the efficiency of discovering effective MOFs for Xe/Kr separation, backed by experimental validation from six MOFs.

Article Abstract

Adsorption and separation of Xe/Kr are significant for making high-density nuclear energy environmentally friendly and for meeting the requirements of the gas industry. Enhancing the accuracy of the adsorbate model for describing the adsorption behaviors of Xe and Kr in MOFs and the efficiency of the model for predicting the separation potential (SP) value of Xe/Kr separation in MOFs helps in searching for promising MOFs for Xe/Kr adsorption and separation within a short time and at a low cost. In this work, polarizable and transferable models for mimic Xe and Kr adsorption behaviors in MOFs were constructed. Using these models, SP values of 38 MOFs at various temperatures and pressures were calculated. An optimal neural network model called BPNN-SP was designed to predict SP value based on physical parameters of metal center (electronegativity and radius) and organic linker (three-dimensional size and polarizability) combined with temperature and pressure. The regression coefficient value of the BPNN-SP model for each data set is higher than 0.995. MAE, MBE, and RMSE of BPNN-SP are only 0.331, -0.002, and 0.505 mmol/g, respectively. Finally, BPNN-SP was validated by experiment data from six MOFs. The transferable adsorbate model combined with the BPNN-SP model would highly improve the efficiency for designing MOFs with high performance for Xe/Kr adsorption and separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648455PMC
http://dx.doi.org/10.3390/molecules28217367DOI Listing

Publication Analysis

Top Keywords

adsorbate model
12
adsorption separation
12
xe/kr separation
8
neural network
8
adsorption behaviors
8
behaviors mofs
8
xe/kr adsorption
8
bpnn-sp model
8
model
7
mofs
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!