AI Article Synopsis

  • Cl, Br, and I are halogens that can enhance the properties of semiconductors when used as dopants, particularly in organic-inorganic hybrid perovskites like CHNHPbX and its variants.
  • Using first-principles density functional theory, researchers simulated and analyzed the optoelectronic properties of these structures, finding that differences in electronegativity among halogens can affect energy band characteristics.
  • The CHNHPbBrCl system demonstrated superior optoelectronic performance and carrier mobility, suggesting its potential as an effective material for solar cell absorption layers.

Article Abstract

Cl, Br, and I are elements in the halogen family, and are often used as dopants in semiconductors. When employed as dopants, these halogens can significantly modify the optoelectronic properties of materials. From the perspective of halogen doping, we have successfully achieved the stabilization of crystal structures in CHNHPbX, CHNHPbICl, CHNHPbIBr, and CHNHPbBrCl, which are organic-inorganic hybrid perovskites. Utilizing first-principles density functional theory calculations with the CASTEP module, we investigated the optoelectronic properties of these structures by simulations. According to the calculations, a smaller difference in electronegativity between different halogens in doped structures can result in smoother energy bands, especially in CHNHPbIBr and CHNHPbBrCl. The PDOS of the Cl-3p orbitals undergoes a shift along the energy axis as a result of variances in electronegativity levels. The optoelectronic performance, carrier mobility, and structural stability of the CHNHPbBrCl system are superior to other systems like CHNHPbX. Among many materials considered, CHNHPbBrCl exhibits higher carrier mobility and a relatively narrower bandgap, making it a more suitable material for the absorption layer in solar cells. This study provides valuable insights into the methodology employed for the selection of specific types, quantities, and positions of halogens for further research on halogen doping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647401PMC
http://dx.doi.org/10.3390/molecules28217341DOI Listing

Publication Analysis

Top Keywords

optoelectronic properties
8
halogen doping
8
chnhpbibr chnhpbbrcl
8
carrier mobility
8
optoelectronic
4
optoelectronic evolution
4
evolution halogen-doped
4
halogen-doped organic-inorganic
4
organic-inorganic halide
4
halide perovskites
4

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

December 2024

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.

View Article and Find Full Text PDF

Exciton Transport in Perovskite Materials.

Adv Mater

December 2024

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Halide perovskites have emerged as promising materials for a wide variety of optoelectronic applications, including solar cells, light-emitting devices, photodetectors, and quantum information applications. In addition to their desirable optical and electronic properties, halide perovskites provide tremendous synthetic flexibility through variation of not only their chemical composition but also their structure and morphology. At the heart of their use in optoelectronic technologies is the interaction of light with electronic excitations in the form of excitons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!