Nature-Inspired Biomolecular Corona Based on Poly(caffeic acid) as a Low Potential and Time-Stable Glucose Biosensor.

Molecules

Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.

Published: October 2023

Herein, we present a novel biosensor based on nature-inspired poly(caffeic acid) (PCA) grafted to magnetite (FeO) nanoparticles with glucose oxidase (GOx) from via adsorption technique. The biomolecular corona was applied to the fabrication of a biosensor system with a screen-printed electrode (SPE). The obtained results indicated the operation of the system at a low potential (0.1 V). Then, amperometric measurements were performed to optimize conditions like various pH and temperatures. The SPE/FeO@PCA-GOx biosensor presented a linear range from 0.05 mM to 25.0 mM, with a sensitivity of 1198.0 μA mM cm and a limit of detection of 5.23 μM, which was compared to other biosensors presented in the literature. The proposed system was selective towards various interferents (maltose, saccharose, fructose, L-cysteine, uric acid, dopamine and ascorbic acid) and shows high recovery in relation to tests on real samples, up to 10 months of work stability. Moreover, the FeO@PCA-GOx biomolecular corona has been characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Bradford assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649105PMC
http://dx.doi.org/10.3390/molecules28217281DOI Listing

Publication Analysis

Top Keywords

biomolecular corona
12
polycaffeic acid
8
low potential
8
nature-inspired biomolecular
4
corona based
4
based polycaffeic
4
acid
4
acid low
4
potential time-stable
4
time-stable glucose
4

Similar Publications

Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.

View Article and Find Full Text PDF

AI-Based Prediction of Protein Corona Composition on DNA Nanostructures.

ACS Nano

January 2025

Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States.

DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered due to spontaneous protein adsorption from biofluids.

View Article and Find Full Text PDF

In this study, we evaluated the impact of Epigalocatechin-3-gallate (EGCG) on biofilm development for 24 and 46 h using high-resolution confocal laser scanning microscopy. EGCG treatment led to the formation of interspaced exopolysaccharide (EPS)-microcolony complexes unevenly distributed on the surface of hydroxyapatite disc, forming a thinner and less complex biofilm structure with significantly reduced biomass, matrix volume, and thickness compared to the NaCl treated group (negative control). At 46 h, the biofilm of the EGCG-treatment group failed to form the bacterial-EPS superstructures which is characteristic of the biofilm in the negative control group.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions.

ACS Nano

December 2024

Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.

It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!