In this study, Cu-10 wt% Fe alloy in as-cast state was modified using friction stir processing (FSP). The microstructure evolution of Cu-10 wt% Fe alloys in different states was characterized in detail using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results show that due to dynamic recrystallization, the FSPed Cu-10 wt% Fe alloy obtained a uniformly equiaxed ultrafine microstructure with low density of dislocation, high proportion of high-angle grain boundaries (HAGBs), and high degree of recrystallization. Fine equiaxed grains with an average size of 0.6 μm were produced after FSP. Many fine-precipitate Fe-phases with an average size of 20 nm were uniformly distributed in the Cu matrix. The FSPed samples possessed excellent mechanical properties, such as high Vickers hardness (163.5 HV), ultimate tensile strength (538.5 MPa), and good elongation (16%). This single-pass FSP method does not require subsequent aging treatment and provides a simple and efficient way to improve the properties of Cu-Fe alloys.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647237 | PMC |
http://dx.doi.org/10.3390/ma16217057 | DOI Listing |
Molecules
December 2023
HUN-REN, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok krt. 2., 1117 Budapest, Hungary.
Monometallic (Ni, Co, Cu) and bimetallic (Ni-Co, Ni-Cu) 10-20 wt.% metal containing catalysts supported on fly ash zeolite were prepared by post-synthesis impregnation method. The catalysts were characterized by X-ray powder diffraction, N physisorption, XPS and H-TPR methods.
View Article and Find Full Text PDFMaterials (Basel)
November 2023
State Key Lab for Powder Metallurgy, Central South University, Changsha 410083, China.
In this study, Cu-10 wt% Fe alloy in as-cast state was modified using friction stir processing (FSP). The microstructure evolution of Cu-10 wt% Fe alloys in different states was characterized in detail using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results show that due to dynamic recrystallization, the FSPed Cu-10 wt% Fe alloy obtained a uniformly equiaxed ultrafine microstructure with low density of dislocation, high proportion of high-angle grain boundaries (HAGBs), and high degree of recrystallization.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2023
Unité de Catalyse et Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, Université Artois, UMR 8181, 59000 Lille, France.
Cu (10 wt%) materials on silica nanotubes were prepared via two different synthetic approaches, co-synthesis and wetness impregnation on preformed SiO nanotubes, both as dried or calcined materials, with Cu(NO)2.5HO as a material precursor. The obtained silica and the Cu samples, after calcination at 550 °C for 5 h, were characterized by several techniques, such as TEM, N physisorption, XRD, Raman, H-TPR and XPS, and tested for toluene oxidation in the 20-450 °C temperature range.
View Article and Find Full Text PDFSci Rep
February 2022
Key Laboratory for Materials Modification by Laser, Ion and Electron Beam (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
Solid solutions are the basis for most industrial alloys. However, the relationships between their characteristic short-range orders and chemical compositions have not been established. The present work combines Cowley parameter α with our cluster-plus-glue-atom model to accurately derive the chemical units of binary solid-solution alloys of face-centered cubic type.
View Article and Find Full Text PDFMaterials (Basel)
June 2021
Łukasiewicz-Krakow Institute of Technology, Zakopianska St. 73, 30-418 Krakow, Poland.
Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!