Bulk metallic glasses (BMGs) display excellent strength, high hardness, exceptional wear resistance and corrosion resistance owing to its amorphous structure. However, the manufacturing of large-sized and complex shaped BMG parts faces significant difficulties, which seriously hinders their applications. Laser powder bed fusion (LPBF) is a typical additive manufacturing (AM) technique with a cooling rate of up to 10 K/s, which not only allows for the formation of amorphous structures but also solves the forming problem of complex-shaped BMG parts. In recent years, a large amount of work has been carried out on the LPBF processing of BMGs. This review mainly summarizes the latest progress in the field of LPBF additively manufactured BMGs focusing on their mechanical properties. We first briefly review the BMG alloy systems that have been additively manufactured using LPBF, then the mechanical properties of LPBF-fabricated BMGs including the micro- and nano-hardness, micropillar compressive performance, and macro-compressive and tensile performance are clarified. Next, the relationship between the mechanical properties and microstructure of BMGs produced via LPBF are analyzed. Finally, the measures for improving the mechanical properties of LPBF-fabricated BMGs are discussed. This review can provide readers with an essential comprehension of the structural and mechanical properties of LPBF-manufactured BMGs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650614PMC
http://dx.doi.org/10.3390/ma16217034DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
additively manufactured
12
bulk metallic
8
metallic glasses
8
laser powder
8
powder bed
8
bed fusion
8
bmg parts
8
properties lpbf-fabricated
8
lpbf-fabricated bmgs
8

Similar Publications

Background: Limited biomechanical evidence exists describing how horizontal meniscus tears (HMTs), meniscal repair (MR), and meniscectomy alter the knee's biomechanical environment.

Purpose: To evaluate changes in knee contact mechanics following HMTs, MR, and meniscectomy.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Comparison of mechanical properties and shaping performance of ProGlider and ProTaper ultimate slider.

BMC Oral Health

January 2025

Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.

Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.

Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.

View Article and Find Full Text PDF

Study on the preparation and design of chenille/polyester integrated yarns and its acoustic properties.

Sci Rep

January 2025

Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.

With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.

View Article and Find Full Text PDF

Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.

View Article and Find Full Text PDF

The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!