In this research, the degradation behavior and failure mechanism of silicone rubber seal rings under the synergistic effects of multiple factors in the marine atmosphere are fully investigated. Firstly, four aging factors of air, temperature, compressive stress, and chemical medium were determined by analyzing the service environment profile of silicone rubber seal under a marine atmosphere environment. Secondly, to better simulate the actual service environment of silicone rubber and shorten the test period, an artificially accelerated aging test was designed and carried out in the laboratory. In this paper, temperature is utilized as the accelerating stress. According to the results of the pre-test, the accelerating stress level is finally determined to be 110-150 ∘C. In addition, the compression set applied is consistent with the constant compression permanent deformation value of 28% of the silicone rubber in the actual service process. Finally, through the macroscopic physical properties and microstructure analysis of the samples before and after aging, the corresponding test results are given, and the failure mechanism is analyzed and discussed in detail. Through the above test results and discussion, it can be concluded that the aging process of multi-factor coupling on the lower silicone rubber seal ring is uneven, and its aging process is not a simple superposition of multiple environmental factors. More importantly, the above test data and results are of great significance for evaluating the service life of silicone rubber seals, which can be utilized in the future to improve the reliability and durability of related equipment in the marine environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647683 | PMC |
http://dx.doi.org/10.3390/ma16217013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!