This study investigates the degradation of the silicon NPN transistor's emitter-base junction, specifically the 2N2219A model, under both forward and reverse polarization. We examine the current-voltage characteristics under the influence of 1 MeV proton irradiation at various fluencies, which are 5.3×108,5.3×1010,5×1011,5×1012, and 5×1013 protons/cm², all conducted at 307 K. The experimental findings elucidate a pronounced dependency of diode parameters, including the reverse saturation current, series resistance, and the non-idealist factor, on the incident proton flow. This observation underscores that proton-induced degradation is primarily driven by displacement damage, while recorded degradation is predominantly attributed to the generation of defects and interfacial traps within the transistor resulting from exposure to high-energy radiation. Our findings indicate that the effects of irradiation align more closely with the compensation phenomenon in doping rather than its reinforcement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648019 | PMC |
http://dx.doi.org/10.3390/ma16216977 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Biophysics and Radiobiology Laboratory, Physics Department, University of Pavia, Pavia, Italy.
We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Theoretical simulations of electron detachment processes are vital for understanding chemical redox reactions, semiconductor and electrochemical properties, and high-energy radiation damage. However, accurate calculations of ionized electronic states are very challenging due to their open-shell nature, importance of electron correlation effects, and strong interactions with chemical environment. In this work, we present an efficient approach based on algebraic diagrammatic construction theory with polarizable embedding that allows to accurately simulate ionized electronic states in condensed-phase or biochemical environments (PE-IP-ADC).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.
Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!