In the current study, bulk tungsten material surfaces are exposed to hydrogen, deuterium, and helium plasmas in the radiofrequency domain (13.56 MHz) at an input power of 250 W using the hollow-cathode configuration. The ejected material is collected on titanium substrates at various distances (from 6 mm up to 40 mm). Therefore, the exposed tungsten materials are investigated for surface changes (blister occurrence, dust formation, or nano-structuration), along with the crystallinity, depending on the plasma's exposure times (from 30 min up to 120 min for each plasma type). Also, the collected materials are analyzed (morphological, structural, and statistical investigations) for dust and dust film-like appearance. Plasma discharges are analyzed using two methods: optical emission spectroscopy, and single Langmuir probes, to emphasize the nature of the used plasmas (cold discharges, ~2 eV), along with the presence of tungsten emission (e.g., WI 406.31 nm, WI 421.31 nm) during the plasma lifetime. By using a dedicated protocol, a method was established for obtaining fusion-relevant tungsten surfaces in the hydrogen and deuterium plasma discharges. By using the implemented method, the current paper introduces the possibility of obtaining a new tungsten morphology, i.e., the dandelion-like shape, by using helium plasma, in which the WO compound can be found.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648097 | PMC |
http://dx.doi.org/10.3390/ma16216853 | DOI Listing |
Environ Sci Process Impacts
January 2025
Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.
Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!