Novel cellular immunotherapies such as T-cell engaging antibodies (TCEAbs) are changing the landscape of treatment for diffuse large B cell lymphoma (DLBCL), especially in the relapsed/refractory (R/R) setting. TCEAbs harness the power of the host immune system to induce killing of tumor cells by binding to both the tumor antigen and the T-cell receptor. Since the approval of blinatumomab for R/R acute lymphoblastic leukemia, there has been significant development in novel TCEAbs. Many of these novel TCEAbs have shown promising effectiveness in R/R DLBCL, with favorable response rates including complete remissions, even in heavily pretreated patients. There are unique therapy-related toxicities with TCEAbs, namely cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS), and it is important to both recognize and manage these side effects appropriately. This review examines the development and mechanism of action of these TCEAbs, and the available published data from clinical trials. Their role in the treatment of DLBCL, the management of therapy-related adverse events, and the mechanisms of resistance will also be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647650 | PMC |
http://dx.doi.org/10.3390/jcm12216737 | DOI Listing |
Immune deficits after CD19 chimeric antigen receptor (CAR) T-cell therapy can be long-lasting, predisposing patients to infections and non-relapse mortality. In B-cell non-Hodgkin lymphoma (B-NHL), the prognostic impact of immune reconstitution (IR) remains ill-defined, and detailed cross-product comparisons have not been performed to date. In this retrospective observational study, we longitudinally characterized lymphocyte subsets and immunoglobulin levels in 105 B-NHL patients to assess patterns of immune recovery arising after CD19 CAR-T.
View Article and Find Full Text PDFJ Transl Med
January 2025
Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany.
Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.
Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.
Cancers (Basel)
December 2024
Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!