Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650312PMC
http://dx.doi.org/10.3390/ijms242115965DOI Listing

Publication Analysis

Top Keywords

hypogonadotropic hypogonadism
12
gnrhr
9
gonadotropin-releasing hormone
8
receptor gnrhr
8
delayed puberty
8
receptor
4
hormone receptor
4
gnrhr hypogonadotropic
4
hypogonadism human
4
human sexual
4

Similar Publications

Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.

Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.

Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.

View Article and Find Full Text PDF

Objectives: Moebius syndrome (MS) is a rare congenital non-progressive rhombencephalic disorder mostly characterised by abducens and facial nerve palsy, but with a multifaceted clinical presentation. Isolated or multiple pituitary hormone deficiencies in the setting of MS have been occasionally reported, but the simultaneous involvement of three or more hypothalamic-pituitary axes has never been described. We hereby report the case of a girl with MS that showed a co-occurrence of GH-, TSH- and ACTH-deficiency.

View Article and Find Full Text PDF

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

Differences/disorders of sex development (DSDs) are a diverse group of congenital conditions that result in disagreement between an individual's sex chromosomes, gonads, and/or anatomical sex. The 46, XY DSD group is vast and includes various conditions caused by genetic variants, hormonal imbalances, or abnormal sensitivity to testicular hormones, leading to varying degrees of under-virilization. A 19-year-old phenotypically normal female from Kakamega, Kenya, presented with primary amenorrhea.

View Article and Find Full Text PDF

Classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency results in severe cortisol and aldosterone deficiency, leading to persistent adrenal stimulation and excess production of ACTH and adrenal androgens. This review examines the clinical considerations and challenges of balancing under- and overtreatment with glucocorticoids in adolescent and adult male individuals with CAH. Adolescents face many unique challenges that can hinder adherence, hormonal control, and transition to independence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!