The p21-activated kinases (PAKs) are important signaling proteins. They contribute to a surprisingly wide range of cellular processes and play critical roles in a number of human diseases including cancer, neurological disorders and cardiac diseases. To get a better understanding of PAK functions, mechanisms and integration of various cellular activities, we screened for proteins that bind to the budding yeast PAK Ste20 as an example, using the split-ubiquitin technique. We identified 56 proteins, most of them not described previously as Ste20 interactors. The proteins fall into a small number of functional categories such as vesicle transport and translation. We analyzed the roles of Ste20 in glucose metabolism and gene expression further. Ste20 has a well-established role in the adaptation to changing environmental conditions through the stimulation of mitogen-activated protein kinase (MAPK) pathways which eventually leads to transcription factor activation. This includes filamentous growth, an adaptation to nutrient depletion. Here we show that Ste20 also induces filamentous growth through interaction with nuclear proteins such as Sac3, Ctk1 and Hmt1, key regulators of gene expression. Combining our observations and the data published by others, we suggest that Ste20 has several new and unexpected functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647699 | PMC |
http://dx.doi.org/10.3390/ijms242115916 | DOI Listing |
J Trace Elem Med Biol
January 2025
Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.
Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.
Sci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
November 2024
Clinical Research, Drug Development Division, Sumitomo Pharma Co., Ltd., 33-94, Enoki-cho, Suita, Osaka, 564-0053, Japan. Electronic address:
The second-generation antipsychotic blonanserin is a highly selective, full antagonist of dopamine D and D and serotonin 5-HT receptors. It is currently prescribed for patients with schizophrenia in Japan. We aimed to develop a population pharmacokinetic model of oral blonanserin, including data from 12 to 77 years old patients, to assess the covariates that influence blonanserin pharmacokinetics and evaluate appropriate dosage regimens in adolescents versus adults.
View Article and Find Full Text PDFNoise Health
January 2025
Department of Public Health, William Paterson University, Wayne, New Jersey, USA.
Background/objectives: Noise remains an under-discussed type of environmental pollutant, which exerts a wide range of adverse health effects, both auditory and non-auditory. Ensuring that the public has ready access to useful health information online about noise exposure is important. In this regard, evaluating the content of public news articles regarding noise pollution is vital.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT M Research Park, Chennai 600113, India.
The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!