Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis.

Int J Mol Sci

Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi'an 710069, China.

Published: November 2023

Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (), and seedlings that develop normally (). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in seedlings. Cotyledons from the WT and seedlings restored the growth of seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647555PMC
http://dx.doi.org/10.3390/ijms242115852DOI Listing

Publication Analysis

Top Keywords

vacuolar sugar
8
transporter tmt2
8
seedling development
8
seedlings
8
cotyledons seedlings
8
growth seedlings
8
development
6
sugar
5
sugar transporter
4
tmt2
4

Similar Publications

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

Recent research has revealed the calcium signaling significance in the production of cellulases in . While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in .

View Article and Find Full Text PDF

High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.

View Article and Find Full Text PDF

By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA.

View Article and Find Full Text PDF

Introduction: Arbuscular mycorrhizal fungi (AMF) can relieve manganese (Mn) phytotoxicity and promote plant growth under Mn stress, but their roles remain unclear.

Methods: In this study, inoculated with or without AMF () under different Mn concentrations (0 mmol/L, 1 mmol/L, 5 mmol/L, 10 mmol/L, and 20 mmol/L) was cultivated via a pot experiment, and plant biomass, physiological and biochemical characteristics, manganese absorption, subcellular distribution, and chemical forms of Mn were examined.

Results: The results showed that root biomass, stem biomass, leaf biomass, and total individual biomass decreased under high Mn concentrations (above 10 mmol/L), and the inoculated plants had higher biomass than the uninoculated plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!