Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been used as a spontaneous disease model of human central nerve, efficient neuronal reprogramming method of canine cells have not been well established. We aimed to induce neuronal features in adult canine dermal fibroblasts (ACDFs) by SMs and assess the permanency of these changes. ACDFs treated with eight SMs developed a round-shaped cell body with branching processes and expressed neuronal proteins, including βIII-tubulin, microtubule-associated protein 2 (MAP2), and neurofilament-medium. Transcriptome profiling revealed the upregulation of neuron-related genes, such as and , and downregulation of fibroblast-related genes, such as and . Calcium fluorescent imaging demonstrated an increase in intracellular Ca concentration upon stimulation with glutamate and KCl. Although neuronal features were induced similarly in basement membrane extract droplet culture, they diminished after culturing without SMs or in vivo transplantation into an injured spinal cord. In conclusion, SMs temporarily induce neuronal features in ACDFs. However, the analysis of bottlenecks in the neuronal induction is crucial for optimizing the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648228 | PMC |
http://dx.doi.org/10.3390/ijms242115804 | DOI Listing |
Nat Commun
January 2025
School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia.
Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.
View Article and Find Full Text PDFAm J Pathol
January 2025
Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.
View Article and Find Full Text PDFPflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFLife (Basel)
January 2025
Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia.
Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly , has garnered significant attention. , a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!