Fetuses with intrauterine growth restriction (FGR) have impaired oxidative and energy metabolism, with persistent consequences on their postnatal development. In this study, we test the hypothesis that FGR skeletal muscle has lower mitochondrial respiration rate and alters the transcriptomic profiles associated with energy metabolism in an ovine model. At late gestation, mitochondrial oxygen consumption rates (OCRs) and transcriptome profiles were evaluated in the skeletal muscle collected from FGR and control fetuses. The ex vivo mitochondrial OCRs were reduced < 0.01) in permeabilized FGR soleus muscle compared to the control muscle but only with pyruvate as the metabolic substrate. Mitochondrial OCRs were similar between the FGR and control groups for palmitoyl-carnitine (fatty acid-driven) or pyruvate plus palmitoyl-carnitine metabolic substrates. A total of 2284 genes were differentially expressed in the semitendinosus muscle from growth restricted fetuses (false discovery rate (FDR) ≤ 0.05). A pathway analysis showed that the upregulated genes (FGR compared to control) were overrepresented for autophagy, HIF-1, AMPK, and FOXO signaling pathways (all with an FDR < 0.05). In addition, the expression of genes modulating pyruvate's entry into the TCA cycle was downregulated, whereas the genes encoding key fatty acid oxidation enzymes were upregulated in the FGR muscle. These findings show that FGR skeletal muscle had attenuated mitochondrial pyruvate oxidation, possibly associated with the inability of pyruvate to enter into the TCA cycle, and that fatty acid oxidation might compensate for the attenuated energy metabolism. The current study provided phenotypic and molecular evidence for adaptive deficiencies in FGR skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648961PMC
http://dx.doi.org/10.3390/ijms242115760DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
fatty acid
12
energy metabolism
12
fgr skeletal
12
muscle
9
fgr
9
mitochondrial respiration
8
muscle growth
8
growth restricted
8
fgr control
8

Similar Publications

Objectives: This study aims to investigate the prognostic value of Temporal Muscle Thickness (TMT) in Chinese patients with newly diagnosed isocitrate dehydrogenase (IDH) wild-type glioblastoma.

Methods: Data were retrospectively collected from patients with isocitrate dehydrogenase wild-type genotype glioblastoma, who underwent surgical treatment and concurrent chemoradiotherapy at our center between May 2019 and May 2023. Multi-model and multivariate Cox regression were used to examine factors associated with overall and progression-free survival.

View Article and Find Full Text PDF

Anatomical considerations for thread-based brow lifting and wrinkle treatment.

J Dermatolog Treat

December 2025

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea.

This review explores the anatomical considerations and technical aspects of thread lifting for the forehead and eyebrow, focusing on the relationships between vascular structures, muscular anatomy, and age-related changes in the forehead-eyebrow complex. It highlights the critical importance of understanding neurovascular pathways, particularly the supratrochlear and supraorbital vessels, as well as the appropriate thread placement techniques necessary for optimal outcomes. The review demonstrates that I-shaped threads, when placed beneath the frontalis muscle, provide a safer and equally effective alternative to traditional U-shaped designs.

View Article and Find Full Text PDF

The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with atrophy, in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without (RA) or with (RAM) mechanotherapy (study 1), or to WB, HS for 7 days, with (HSM) or without mechanotherapy (study 2) to gastrocnemius. Muscle fiber cross sectional area (CSA) and type, collagen, satellite cell number, and protein synthesis (K) and degradation (K) were assessed.

View Article and Find Full Text PDF

Intramuscular inhibition of glycogen phosphorylase improves motor function in spinal cord injury.

Biochem Biophys Res Commun

January 2025

Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.

Motor dysfunction in various diseases and aging is often accompanied by skeletal muscle atrophy and reduced axonal projections from motor neurons to the skeletal muscles. While several studies have investigated the correlations and molecular mechanisms between muscle atrophy and motor neuron denervation to explain the pathology of motor diseases, it remains unclear whether skeletal muscle atrophy directly causes axonal denervation of motor neurons. Here, we used a casts-attached mouse model which represents muscle atrophy and motor dysfunction in the hindlimbs to explore how skeletal muscle atrophy affects motor neuronal axon projections.

View Article and Find Full Text PDF

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!