Highly concentrated lens proteins, mostly β- and γ-crystallin, are responsible for maintaining the structure and refractivity of the eye lens. However, with aging and cataract formation, β- and γ-crystallin are associated with the lens membrane or other lens proteins forming high-molecular-weight proteins, which further associate with the lens membrane, leading to light scattering and cataract development. The mechanism by which β- and γ-crystallin are associated with the lens membrane is unknown. This work aims to study the interaction of β- and γ-crystallin with the phospholipid membrane with and without cholesterol (Chol) with the overall goal of understanding the role of phospholipid and Chol in β- and γ-crystallin association with the membrane. Small unilamellar vesicles made of Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (Chol/POPC) membranes with varying Chol content were prepared using the rapid solvent exchange method followed by probe tip sonication and then dispensed on freshly cleaved mica disk to prepare a supported lipid membrane. The β- and γ-crystallin from the cortex of the bovine lens was used to investigate the time-dependent association of β- and γ-crystallin with the membrane by obtaining the topographical images using atomic force microscopy. Our study showed that β-crystallin formed semi-transmembrane defects, whereas γ-crystallin formed transmembrane defects on the phospholipid membrane. The size of semi-transmembrane defects increases significantly with incubation time when β-crystallin interacts with the membrane. In contrast, no significant increase in transmembrane defect size was observed in the case of γ-crystallin. Our result shows that Chol inhibits the formation of membrane defects when β- and γ-crystallin interact with the Chol/POPC membrane, where the degree of inhibition depends upon the amount of Chol content in the membrane. At a Chol/POPC mixing ratio of 0.3, membrane defects were observed when both β- and γ-crystallin interacted with the membrane. However, at a Chol/POPC mixing ratio of 1, no association of γ-crystallin with the membrane was observed, which resulted in a defect-free membrane, and the severity of the membrane defect was decreased when β-crystallin interacted with the membrane. The semi-transmembrane or transmembrane defects formed by the interaction of β- and γ-crystallin on phospholipid membrane might be responsible for light scattering and cataract formation. However, Chol suppressed the formation of such defects in the membrane, likely maintaining lens membrane homeostasis and protecting against cataract formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649403PMC
http://dx.doi.org/10.3390/ijms242115720DOI Listing

Publication Analysis

Top Keywords

β- γ-crystallin
44
membrane
22
phospholipid membrane
16
lens membrane
16
γ-crystallin
14
interaction β-
12
γ-crystallin phospholipid
12
cataract formation
12
β-
10
atomic force
8

Similar Publications

Correlation between polymorphisms of gene and renal injury in patients with type 2 diabetes mellitus.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha 410013.

Objectives: Genetic factors play an important role in the pathogenesis of diabetic kidney disease (DKD). Studies have shown that gene polymorphism is associated with the pathogenesis of type 2 diabetes mellitus (T2DM), but its role in DKD remains unclear. This study aims to analyze the distribution of alleles and genotypes of gene in patients with T2DM, and investigate the association between genetic polymorphism and DKD susceptibility in T2DM patients, which may provide new ideas for the pathogenesis of DKD.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.

View Article and Find Full Text PDF

Sheep facial expressions are valuable indicators of their pain levels, playing a critical role in monitoring their health and welfare. In response to challenges such as missed detections, false positives, and low recognition accuracy in sheep facial expression recognition, this paper introduces an enhanced algorithm based on YOLOv8n, referred to as SimAM-MobileViTAttention-EfficiCIoU-AA2_SPPF-YOLOv8n (SMEA-YOLOv8n). Firstly, the proposed method integrates the parameter-free Similarity-Aware Attention Mechanism (SimAM) and MobileViTAttention modules into the CSP Bottleneck with 2 Convolutions(C2f) module of the neck network, aiming to enhance the model's feature representation and fusion capabilities in complex environments while mitigating the interference of irrelevant background features.

View Article and Find Full Text PDF

The concept of non-trivial electronic structure combined with reduced dimensionality presents a promising strategy for advancing optical applications and energy harvesting technologies. Symmetry breaking in low dimensional system enables the emergence of non-linear optical responses, which are greatly amplified by the singular points of band inversion. Here, using first-principles calculations, the significant enhancement of the shift current in Bi nanotubes is investigated, driven by the combined effects of 1D geometry and non-trivial band order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!